3,257 research outputs found

    The Algebra of Non-Local Charges in Non-Linear Sigma Models

    Full text link
    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N)O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower.Comment: 27 pages + figures available via ftp, Plain TeX, IFUSP/P-106

    Current Algebra of Super WZNW Models

    Get PDF
    We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super Kac-Moody algebra as expected, but in general there are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields since the purely fermionic sector displays a Lie algebra as well.Comment: 13 page

    Quantum State Density and Critical Temperature in M-theory

    Full text link
    We discuss the asymptotic properties of quantum states density for fundamental p−p-branes which can yield a microscopic interpretation of the thermodynamic quantities in M-theory. The matching of BPS part of spectrum for superstring and supermembrane gives the possibility of getting membrane's results via string calculations. In the weak coupling limit of M-theory the critical behavior coincides with the first order phase transition in standard string theory at temperature less than the Hagedorn's temperature THT_H. The critical temperature at large coupling constant is computed by considering M-theory on manifold with topology R9⊗mathbbT2{\mathbb R}^9\otimes{mathbb T}^2. Alternatively we argue that any finite temperature can be introduced in the framework of membrane thermodynamics.Comment: 16 pages, published in Mod. Phys. Lett. A16(2001)224

    Closed String Thermal Torus From Thermo Field Dynamics

    Full text link
    In this Letter a topological interpretation for the string thermal vacuum in the Thermo Field Dynamics (TFD) approach is given. As a consequence, the relationship between the Imaginary Time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived.Comment: 14 pages, revtex4, changes in the text and references. Version to be published in Physics Letters

    Plane waves in noncommutative fluids

    Full text link
    We study the dynamics of the noncommutative fuid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monocromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.Comment: 11 pages. Version published as a Lette

    Light and Electron Microscopy of the Sweat Glands of the Dromedary Camel

    Full text link

    TFD Approach to Bosonic Strings and DPD_{P}-branes

    Full text link
    In this work we explain the construction of the thermal vacuum for the bosonic string, as well that of the thermal boundary state interpreted as a DpD_{p}-brane at finite temperature. In both case we calculate the respective entropy using the entropy operator of the Thermo Field Dynamics Theory. We show that the contribution of the thermal string entropy is explicitly present in the DpD_{p}-brane entropy. Furthermore, we show that the Thermo Field approach is suitable to introduce temperature in boundary states.Comment: 6 pages, revtex, typos are corrected. Prepared for the Second Londrina Winter School-Mathematical Methods in Physics, August 25-30, 2002, Londrina-Pr, Brazil. To appear in a special issue of IJMP
    • …
    corecore