Abstract

We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super Kac-Moody algebra as expected, but in general there are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields since the purely fermionic sector displays a Lie algebra as well.Comment: 13 page

    Similar works