23 research outputs found

    Changes in circulating microRNA levels can be identified as early as day 8 of pregnancy in cattle

    Get PDF
    <div><p>Poor reproductive performance remains a major issue in the dairy industry, with low conception rates having a significant impact on milk production through extended calving intervals. A major limiting factor is the lack of reliable methods for early pregnancy diagnosis. Identification of animals within a herd that fail to conceive within 3 weeks after insemination would allow early re-insemination and shorten calving intervals. In a previous study, we found an increase in plasma miR-26a levels in Day 16-pregnant relative to non-pregnant heifers, however changes in miRNA levels that early during pregnancy were very small which likely prevented the identification of robust biomarkers. In this study, we extended our analyses to a wider interval during pregnancy (Days 8 to 60, n = 11 heifers) with the rationale that this may facilitate the identification of additional early pregnancy miRNA biomarkers. Using small RNA sequencing we identified a total of 77 miRNAs that were differentially expressed on Day 60 relative to Day 0 of pregnancy. We selected 14 miRNAs for validation by RT-qPCR and confirmed significant differences in the expression of let-7f, let-7c, miR-30c, miR-101, miR-26a, miR-205 and miR-143 between Days 0 and 60. RT-qPCR profiling throughout Days 0, 8, 16 and 60 of pregnancy showed a distinct increase in circulating levels of miR-26a (3.1-fold, P = 0.046) as early as Day 8 of pregnancy. In summary, in contrast to earlier stages of pregnancy (≤ Day 24), marked differences in the levels of multiple miRNAs can be detected in circulation by Day 60 in cattle. Retrospective analyses showed miR-26a levels to be increased in circulation as early as Day 8, sooner than previously reported in any species, suggesting a biological role for this miRNA in the very early events of pregnancy.</p></div

    Efficient transmission of encrypted images with OFDM in the presence of carrier frequency offset

    No full text
    In this paper, the impact of carrier frequency offset (CFO) and CFO compensation on the transmission of encrypted images with different orthogonal frequency division multiplexing (OFDM) versions is studied. The investigated OFDM versions are thefast Fourier transform OFDM, the discrete cosine transform OFDM, and the discrete wavelet transform OFDM. A comparison between four encryption algorithms with images transmitted through different OFDM versions is presented. These algorithms are data encryption standard, advanced encryption standard, RC6, and chaotic Baker map. This comparison aims to select the most appropriate version of OFDM, and the most suitable image encryption algorithm for efficient image transmission. In the simulation experiments, the peak signal-to-noise ratio at the receiver is used as an evaluation metric for the decrypted image quality
    corecore