5 research outputs found

    Chemical Kinetic Investigation: Exploring the Impact of Various Concentrations of HHO Gas with a 40% Biodiesel/Diesel Blend on HCCI Combustion

    Get PDF
    This study uses the Chemkin software program to evaluate the effect of different quantities of oxyhydrogen gas [HHO] added to 40% biodiesel and diesel mix [B40], including B40, B40+5HHO, B40+10HHO, and B40+15HHO, on the HCCI combustion process\u27s efficiency. The information collected includes cylinder pressure, cylinder temperature, accumulated gas phase heat release, heat loss rate, UHC, and mole fractions of O2, CO, CO2, diesel [NC7H16], biodiesel [C5H10O2], and oxyhydrogen [H2O]. The finding is that, when compared to a blend of biodiesel and diesel, using oxyhydrogen in the biodiesel/diesel mix boosts the properties of the HCCI engine

    Exploring the Influence of Various Factors, Including Initial Temperatures, Equivalence Ratios, and Different Biodiesel/Diesel Blend Ratios, on Homogeneous Charge Compression Ignition (HCCI) Combustion

    Get PDF
    This paper discusses the impact of three study cases that change with different values: the first case is four initial temperature values [313, 323, 333, and 343 K], the second case is three equivalence ratios [0.2, 0.3, and 0.4], and the third case uses various concentrations of biodiesel and diesel mixes [D100, B20, B40, B60, B80, and B100]. The purpose is to use the Chemkin software program to determine the effectiveness of each case in the HCCI combustion process. The results included cylinder pressure, cylinder temperature, accumulated gas phase heat release, heat loss rate, UHC, and mole fractions of O2, CO, CO2, diesel [NC7H16] and biodiesel [C5H10O2]. the conclusion that biodiesel blends enhance the characteristics of the HCCI engine as compared to conventional diesel
    corecore