31 research outputs found

    PAEDERUS ALFIERI EXTRACT INDUCES APOPTOSIS IN HUMAN MYELOID LEUKEMIA K562 CELLS

    Get PDF
    Objective: The rove beetle Paederus alfieri Koch. (Coleoptera: Staphylinidae) is well-known among natural enemies in Egypt as an important predator of agricultural insect pests, it used as an essential agent in the integrated pest management programs. Recent studies have revealed that Paederus may have anti-proliferative effect; however, its mechanisms remain unclear. The aim of the present study is to investigate the anticancer effect of P. alfieri extract (PAE) on K562 human myeloid leukemia cancer cells and elucidation of its mechanism.Methods: Human myeloid leukemia K562 cells were treated with PAE at different concentrations. Cell proliferation was measured using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was evaluated using flow cytometry analysis. The expressions of Bcl-2, Bax, active caspase-3, t-Akt, and p-Akt were evaluated by western blotting.Results:  PAE  has  a  dose-dependent  antiproliferative  effect  against  K562 cells.  The  half  maximal  inhibitory  concentration  was  estimated  as212±2.3 ng/ml. Flow cytometric analysis showed that PAE induces apoptosis in a dose-dependent manner in K562 cells. We also investigated the molecular mechanism of PAE-induced apoptosis. PAE downregulated Bcl-2 and upregulated Bax and cleaved caspase-3 proteins. Furthermore, the levels of p-Akt are dose-dependently decreased in response to PAE, whereas the total Akt protein levels remained constant during PAE treatment.Conclusion: Taken together PAE-induced apoptosis in human myeloid leukemia K562 cells by modulating PI3K/Akt pathway. Our findings suggest that may be PAE is a good extract for developing anticancer drugs for human myeloid leukemia cancer treatment.Keywords: Paederus alfieri, Pederin, K562, Apoptosis, PI3K/Akt pathway

    Specific Targeting and Labeling of Colonic Polyps in CPC-APC Mice with Mucin 5AC Fluorescent Antibodies: A Model for Detection of Early Colon Cancer

    Get PDF
    Poor visualization of polyps can limit colorectal cancer screening. Fluorescent antibodies to mucin5AC (MUC5AC), a glycoprotein upregulated in adenomas and colorectal cancer, could improve screening colonoscopy polyp detection rate. Adenomatous polyposis coli flox mice with a Cdx2-Cre transgene (CPC-APC) develop colonic polyps that contain both dysplastic and malignant tissue. Mice received MUC5AC-IR800 or IRdye800 as a control IV and were sacrificed after 48 h for near-infrared imaging of their colons. A polyp-to-background ratio (PBR) was calculated for each polyp by dividing the mean fluorescence intensity of the polyp by the mean fluorescence intensity of the background tissue. The mean 25 μg PBR was 1.70 (±0.56); the mean 50 μg PBR was 2.64 (±0.97); the mean 100 μg PBR was 3.32 (±1.33); and the mean 150 μg PBR was 3.38 (±0.87). The mean PBR of the dye-only control was 2.22 (±1.02), significantly less than the 150 μg arm (p-value 0.008). The present study demonstrates the ability of fluorescent anti-MUC5AC antibodies to specifically target and label colonic polyps containing high-grade dysplasia and intramucosal adenocarcinoma in CPC-APC mice. This technology can potentially improve the detection rate and decrease the miss rate of advanced colonic neoplasia and early cancer at colonoscopy

    Modeling colorectal cancers using multidimensional organoids.

    No full text
    Organoids have revolutionized cancer research as highly adaptable models that enable an array of experimental techniques to interrogate tissue morphology and function. Because they preserve the genetic, phenotypic, and behavioral traits of their source tissue, organoids have gained traction as the most relevant models for drug discovery, tracking therapeutic response and for personalized medicine. As organoids are indisputably becoming a mainstay of cancer research, this review specifically addresses how colon-derived organoids can be perfected as multidimensional, scalable, reproducible models of healthy, pre-neoplastic and neoplastic conditions of the colon and for use in high-throughput "Phase-0" human clinical trials-in-a-dish

    Tailored Functionalized Protein Nanocarriers for Cancer Therapy: Recent Developments and Prospects

    No full text
    Recently, the potential use of nanoparticles for the targeted delivery of therapeutic and diagnostic agents has garnered increased interest. Several nanoparticle drug delivery systems have been developed for cancer treatment. Typically, protein-based nanocarriers offer several advantages, including biodegradability and biocompatibility. Using genetic engineering or chemical conjugation approaches, well-known naturally occurring protein nanoparticles can be further prepared, engineered, and functionalized in their self-assembly to meet the demands of clinical production efficiency. Accordingly, promising protein nanoparticles have been developed with outstanding tumor-targeting capabilities, ultimately overcoming multidrug resistance issues, in vivo delivery barriers, and mimicking the tumor microenvironment. Bioinspired by natural nanoparticles, advanced computational techniques have been harnessed for the programmable design of highly homogenous protein nanoparticles, which could open new routes for the rational design of vaccines and drug formulations. The current review aims to present several significant advancements made in protein nanoparticle technology, and their use in cancer therapy. Additionally, tailored construction methods and therapeutic applications of engineered protein-based nanoparticles are discussed

    Discovery of antiproliferative and anti-FAK inhibitory activity of 1,2,4-triazole derivatives containing acetamido carboxylic acid skeleton

    No full text
    Small molecule inhibitors of the focal adhesion kinase are regarded as promising tools in our armamentarium for treating cancer. Here, we identified four 1,2,4-triazole derivatives that inhibit FAK kinase significantly and evaluated their therapeutic potential. Most tested compounds revealed potent antiproliferative activity in HepG2 and Hep3B liver cancer cells, in which 3c and 3d were the most potent (IC50 range; 2.88 ~ 4.83 µM). Compound 3d possessed significant FAK inhibitory activity with IC50 value of 18.10 nM better than the reference GSK-2256098 (IC50 = 22.14 nM). The preliminary mechanism investigation by Western blot analysis showed that both 3c and 3d repressed FAK phosphorylation comparable to GSK-2256098 in HepG2 cells. As a result of FAK inhibition, 3c and 3d inhibited the pro-survival pathways by decreasing the phosphorylation levels of PI3K, Akt, JNK, and STAT3 proteins. This effect led to apoptosis induction and cell cycle arrest. Taken together, these results indicate that 3d could serve as a potent preclinical candidate for the treatment of cancers

    FAK inhibitors as promising anticancer targets: present and future directions.

    No full text
    FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed

    Molecular docking and dynamic simulations study for repurposing of multitarget coumarins against SARS-CoV-2 main protease, papain-like protease and RNA-dependent RNA polymerase

    No full text
    Proteases and RNA-Dependent RNA polymerase, major enzymes which are essential targets involved in the life and replication of SARS-CoV-2. This study aims at in silico examination of the potential ability of coumarins and their derivatives to inhibit the replication of SARS-Cov-2 through multiple targets, including the main protease, papain-like protease and RNA-Dependent RNA polymerase. Several coumarins as biologically active compounds were studied, including coumarin antibiotics and some naturally reported antiviral coumarins. Aminocoumarin antibiotics, especially coumermycin, showed a high potential to bind to the enzymes’ active site, causing possible inhibition and termination of viral life. They demonstrate the ability to bind to residues essential for triggering the crucial cascades within the viral cell. Molecular dynamics simulations for 50 ns supported these data pointing out the formation of rigid, stable Coumermycin/enzyme complexes. These findings strongly suggest the possible use of Coumermycin, Clorobiocin or Novobiocin in the fight against COVID-19, but biological evidence is still required to support such suggestions
    corecore