3,340 research outputs found

    Investigation of MRSA transmission between pigs and the environment following intra-nasal inoculation

    Get PDF
    Meticillin-resistant Staphylococcus aureus (MRSA) ST398 has not been detected in pigs in Ireland. However, other strains of MRSA, including MRSA t002, have been isolated from animals and humans in Ireland. The aim of this study was to determine if nasal colonization of pigs with a non-ST398 strain of MRSA could be reproduced using intra-nasal inoculation and to investigate subsequent transmission of this strain. Six pigs were inoculated intra-nasally with 2 x 109cfu MRSA t002. Six days post-inoculation these pigs were washed and moved to a clean house with 15 unexposed pigs (In-contact group). Another 15 unexposed pigs were added to the vacated house (Environment group)

    Observing the Inflaton Potential

    Full text link
    We show how observations of the density perturbation (scalar) spectrum and the gravitational wave (tensor) spectrum allow a reconstruction of the potential responsible for cosmological inflation. A complete functional reconstruction or a perturbative approximation about a single scale are possible; the suitability of each approach depends on the data available. Consistency equations between the scalar and tensor spectra are derived, which provide a powerful signal of inflation.Comment: 9 pages, LaTeX, FERMILAB--PUB--93/071--A; SUSSEX-AST 93/4-

    Cosmological perturbations from braneworld inflation with a Gauss-Bonnet term

    Get PDF
    Braneworld inflation is a phenomenology related to string theory that describes high-energy modifications to general relativistic inflation. The observable universe is a braneworld embedded in 5-dimensional anti de Sitter spacetime. Whe the 5-dimensional action is Einstein-Hilbert, we have a Randall-Sundrum type braneworld. The amplitude of tensor and scalar perturbations from inflation is strongly increased relative to the standard results, although the ratio of tensor to scalar amplitudes still obeys the standard consistency relation. If a Gauss-Bonnet term is included in the action, as a high-energy correction motivated by string theory, we show that there are important changes to the Randall-Sundrum case. We give an exact analysis of the tensor perturbations. They satisfy the same wave equation and have the same spectrum as in the Randall-Sundrum case, but the Gauss-Bonnet change to the junction conditions leads to a modified amplitude of gravitational waves. The amplitude is no longer monotonically increasing with energy scale, but decreases asymptotically after an initial rise above the standard level. Using an approximation that neglects bulk effects, we show that the amplitude of scalar perturbations has a qualitatively similar behaviour to the tensor amplitude. In addition, the tensor to scalar ratio breaks the standard consistency relation.Comment: Minor alterations to match published versio

    Detecting a light Higgs boson at the Fermilab Tevatron through enhanced decays to photon pairs

    Full text link
    We analyze the prospects of the Tevatron for finding a Higgs boson in the two photon decay mode. We conclude that the Standard Model (SM) Higgs boson will likely not be discovered in this mode. However, we motivate several theories beyond the SM, including the MSSM, that predict a Higgs boson with enhanced branching fractions into photons, and calculate the luminosity needed to discover a general Higgs boson at the Tevatron by a two-photon invariant mass peak at large transverse momentum. We find that a high luminosity Tevatron will play a significant role in discovering or constraining these theories.Comment: 20 pages, latex, 5 figure

    Fermion Masses in Emergent Electroweak Symmetry Breaking

    Full text link
    We consider the generation of fermion masses in an emergent model of electroweak symmetry breaking with composite W,ZW,Z gauge bosons. A universal bulk fermion profile in a warped extra dimension is used for all fermion flavors. Electroweak symmetry is broken at the UV (or Planck) scale where boundary mass terms are added to generate the fermion flavor structure. This leads to flavor-dependent nonuniversality in the gauge couplings. The effects are suppressed for the light fermion generations but are enhanced for the top quark where the ZttˉZt{\bar t} and WtbˉWt{\bar b} couplings can deviate at the 10−2010-20% level in the minimal setup. By the AdS/CFT correspondence our model implies that electroweak symmetry is not a fundamental gauge symmetry. Instead the Standard Model with massive fermions and W,ZW,Z gauge bosons is an effective chiral Lagrangian for some underlying confining strong dynamics at the TeV scale, where mass is generated without a Higgs mechanism.Comment: modified discussion in Sec 3.1, version published in JHE

    Inflation with a constant ratio of scalar and tensor perturbation amplitudes

    Get PDF
    The single scalar field inflationary models that lead to scalar and tensor perturbation spectra with amplitudes varying in direct proportion to one another are reconstructed by solving the Stewart-Lyth inverse problem to next-to-leading order in the slow-roll approximation. The potentials asymptote at high energies to an exponential form, corresponding to power law inflation, but diverge from this model at low energies, indicating that power law inflation is a repellor in this case. This feature implies that a fine-tuning of initial conditions is required if such models are to reproduce the observations. The required initial conditions might be set through the eternal inflation mechanism. If this is the case, it will imply that the spectral indices must be nearly constant, making the underlying model observationally indistinguishable from power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following referee's comments. One figure added. Some other minor changes. No conclusion was modifie

    Revisiting special relativity: A natural algebraic alternative to Minkowski spacetime

    Get PDF
    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension ict i c t , with the unit imaginary producing the correct spacetime distance x2−c2t2 x^2 - c^2 t^2 , and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary i=−1 i = \sqrt{-1} , with the Clifford bivector ι=e1e2 \iota = e_1 e_2 for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis e1 e_1 and e2 e_2 . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.Comment: 29 pages, 2 figure

    Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Get PDF
    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm
    • …
    corecore