13 research outputs found

    Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection: A Randomized Clinical Trial

    Get PDF
    Importance: Easy-to-administer anti-SARS-CoV-2 treatments may be used to prevent progression from asymptomatic infection to symptomatic disease and to reduce viral carriage. Objective: To evaluate the effect of combination subcutaneous casirivimab and imdevimab on progression from early asymptomatic SARS-CoV-2 infection to symptomatic COVID-19. Design, Setting, and Participants: Randomized, double-blind, placebo-controlled, phase 3 trial of close household contacts of a SARS-CoV-2-infected index case at 112 sites in the US, Romania, and Moldova enrolled July 13, 2020-January 28, 2021; follow-up ended March 11, 2021. Asymptomatic individuals (aged ≥12 years) were eligible if identified within 96 hours of index case positive test collection. Results from 314 individuals positive on SARS-CoV-2 reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) testing are reported. Interventions: Individuals were randomized 1:1 to receive 1 dose of subcutaneous casirivimab and imdevimab, 1200 mg (600 mg of each; n = 158), or placebo (n = 156). Main Outcomes and Measures: The primary end point was the proportion of seronegative participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy end points were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10copies/mL). Results: Among 314 randomized participants (mean age, 41.0 years; 51.6% women), 310 (99.7%) completed the efficacy assessment period; 204 were asymptomatic and seronegative at baseline and included in the primary efficacy analysis. Subcutaneous casirivimab and imdevimab, 1200 mg, significantly prevented progression to symptomatic disease (29/100 [29.0%] vs 44/104 [42.3%] with placebo; odds ratio, 0.54 [95% CI, 0.30-0.97]; P =.04; absolute risk difference, -13.3% [95% CI, -26.3% to -0.3%]). Casirivimab and imdevimab reduced the number of symptomatic weeks per 1000 participants (895.7 weeks vs 1637.4 weeks with placebo; P =.03), an approximately 5.6-day reduction in symptom duration per symptomatic participant. Treatment with casirivimab and imdevimab also reduced the number of high viral load weeks per 1000 participants (489.8 weeks vs 811.9 weeks with placebo; P =.001). The proportion of participants receiving casirivimab and imdevimab who had 1 or more treatment-emergent adverse event was 33.5% vs 48.1% for placebo, including events related (25.8% vs 39.7%) or not related (11.0% vs 16.0%) to COVID-19. Conclusions and Relevance: Among asymptomatic SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact, treatment with subcutaneous casirivimab and imdevimab antibody combination vs placebo significantly reduced the incidence of symptomatic COVID-19 over 28 days. Trial Registration: ClinicalTrials.gov Identifier: NCT04452318

    Identification of Novel Glycans in the Mucus Layer of Shark and Skate Skin

    No full text
    The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage. While the mucus layers of various bony fish species have been investigated, the composition and glycan profiles of shark skin mucus remain relatively unexplored. In this pilot study, we aimed to explore the structure and composition of shark skin mucus through histological analysis and glycan profiling. Histological examination of skin samples from Atlantic spiny dogfish (Squalus acanthias) sharks and chain catsharks (Scyliorhinus retifer) revealed distinct mucin-producing cells and a mucus layer, indicating the presence of a functional mucus layer similar to bony fish mucus albeit thinner. Glycan profiling using liquid chromatography–electrospray ionization tandem mass spectrometry unveiled a diverse repertoire of mostly O-glycans in the mucus of the two sharks as well as little skate (Leucoraja erinacea). Elasmobranch glycans differ significantly from bony fish, especially in being more sulfated, and some bear resemblance to human glycans, such as gastric mucin O-glycans and H blood group-type glycans. This study contributes to the concept of shark skin having unique properties and provides a foundation for further research into the functional roles and potential biomedical implications of shark skin mucus glycans

    Creation of an albino squid line by CRISPR-Cas9 and its application for in vivo functional imaging of neural activity

    No full text
    Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms
    corecore