5 research outputs found

    Signatures of copy number alterations in human cancer

    No full text
    The gains and losses of DNA that emerge as a consequence of mitotic errors and chromosomal instability are prevalent in cancer. These copy number alterations contribute to cancer initiaition, progression and therapeutic resistance. Here, we present a conceptual framework for examining the patterns of copy number alterations in human cancer using whole-genome sequencing, whole-exome sequencing, and SNP6 microarray data making it widely applicable to diverse datasets. Deploying this framework to 9,873 cancers representing 33 human cancer types from the TCGA project revealed a set of 19 copy number signatures that explain the copy number patterns of 93% of TCGA samples. 15 copy number signatures were attributed to biological processes of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, and chromothripsis. The aetiology of four copy number signatures are unexplained and some cancer types have unique patterns of amplicon signatures associated with extrachromosomal DNA, disease-specific survival, and gains of proto-oncogenes such as MDM2. In contrast to base-scale mutational signatures, no copy number signature associated with known cancer risk factors. The results provide a foundation for exploring patterns of copy number changes in cancer genomes and synthesise the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes giving rise to copy number changes.info:eu-repo/semantics/publishe

    Signatures of copy number alterations in human cancer

    Get PDF
    Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3-5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations

    Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor.

    No full text
    Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues. </p
    corecore