6,160 research outputs found
The form factors from Analyticity and Unitarity
Analyticity and unitarity techniques are employed to obtain bounds on the
shape parameters of the scalar and vector form factors of semileptonic
decays. For this purpose we use vector and scalar correlators evaluated in
pQCD, a low energy theorem for scalar form factor, lattice results for the
ratio of kaon and pion decay constants, chiral perturbation theory calculations
for the scalar form factor at the Callan-Treiman point and experimental
information on the phase and modulus of form factors up to an energy
\tin=1 {\rm GeV}^2. We further derive regions on the real axis and in the
complex-energy plane where the form factors cannot have zeros.Comment: 6 pages, 5 figures; Seminar given at DAE-BRNS Workshop on Hadron
Physics Bhabha Atomic Research Centre, Mumbai, India October 31-November 4,
2011, submitted to Proceeding
Phantom Energy Accretion by Stringy Charged Black Hole
We investigate the dynamical behavior of phantom energy near stringy
magnetically charged black hole. For this purpose, we derive equations of
motion for steady-state spherically symmetric flow of phantom energy onto the
stringy magnetically charged black hole. It is found that phantom energy
accreting onto black hole decreases its mass. Further, the location of critical
points of accretion is explored, which yields mass to charge ratio. This ratio
implies that accretion process cannot transform a black hole into an extremal
black hole or a naked singularity, hence cosmic censorship hypothesis remains
valid here.Comment: 7 pages, no figur
Unstable Disk Galaxies. II. the Origin of Growing and Stationary Modes
I decompose the unstable growing modes of stellar disks to their Fourier
components and present the physical mechanism of instabilities in the context
of resonances. When the equilibrium distribution function is a non-uniform
function of the orbital angular momentum, the capture of stars into the
corotation resonance imbalances the disk angular momentum and triggers growing
bar and spiral modes. The stellar disk can then recover its angular momentum
balance through the response of non-resonant stars. I carry out a complete
analysis of orbital structure corresponding to each Fourier component in the
radial angle, and present a mathematical condition for the occurrence of van
Kampen modes, which constitute a continuous family. I discuss on the
discreteness and allowable pattern speeds of unstable modes and argue that the
mode growth is saturated due to the resonance overlapping mechanism. An
individually growing mode can also be suppressed if the corotation and inner
Lindblad resonances coexist and compete to capture a group of stars. Based on
this mechanism, I show that self-consistent scale-free disks with a sufficient
distribution of non-circular orbits should be stable under perturbations of
angular wavenumber . I also derive a criterion for the stability of
stellar disks against non-axisymmetric excitations.Comment: 15 Pages (emulateapj), 7 Figures, Accepted for Publication in The
Astrophysical Journa
Binary optical communication in single-mode and entangled quantum noisy channels
We address binary optical communication in single-mode and entangled quantum
noisy channels. For single-mode we present a systematic comparison between
direct photodetection and homodyne detection in realistic conditions, i.e.
taking into account the noise that occurs both during the propagation and the
detection of the signals. We then consider entangled channels based on
twin-beam state of radiation, and show that with realistic heterodyne detection
the error probability at fixed channel energy is reduced in comparison to the
single-mode cases for a large range of values of quantum efficiency and noise
parameters
Dual-random ensemble method for multi-label classification of biological data
This paper presents a dual-random ensemble multi-label classification method for classification of multi-label data. The method is formed by integrating and extending the concepts of feature subspace method and random k-label set ensemble multi-label classification method. Experiemental results show that the developed method outperforms the exisiting multi-lable classification methods on three different multi-lable datasets including the biological yeast and genbase datasets.<br /
Theory of unitarity bounds and low energy form factors
We present a general formalism for deriving bounds on the shape parameters of
the weak and electromagnetic form factors using as input correlators calculated
from perturbative QCD, and exploiting analyticity and unitarity. The values
resulting from the symmetries of QCD at low energies or from lattice
calculations at special points inside the analyticity domain can beincluded in
an exact way. We write down the general solution of the corresponding Meiman
problem for an arbitrary number of interior constraints and the integral
equations that allow one to include the phase of the form factor along a part
of the unitarity cut. A formalism that includes the phase and some information
on the modulus along a part of the cut is also given. For illustration we
present constraints on the slope and curvature of the K_l3 scalar form factor
and discuss our findings in some detail. The techniques are useful for checking
the consistency of various inputs and for controlling the parameterizations of
the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version
accepted by EPJA in Tools section; sentences and figures improve
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black
hole. The energy flux conservation, relativistic Bernoulli equation and mass
flux conservation equation are formulated to discuss the phantom accretion. We
discuss the conditions for critical accretion. It is found that mass of the
black hole decreases due to phantom accretion. There exist two critical points
which lie in the exterior of horizons (black hole and cosmological horizons).
The results for the phantom energy accretion onto the Schwarzschild black hole
can be recovered by taking .Comment: 9 pages, no figur
- …