6,160 research outputs found

    The KπK\pi form factors from Analyticity and Unitarity

    Full text link
    Analyticity and unitarity techniques are employed to obtain bounds on the shape parameters of the scalar and vector form factors of semileptonic Kl3K_{l3} decays. For this purpose we use vector and scalar correlators evaluated in pQCD, a low energy theorem for scalar form factor, lattice results for the ratio of kaon and pion decay constants, chiral perturbation theory calculations for the scalar form factor at the Callan-Treiman point and experimental information on the phase and modulus of KπK\pi form factors up to an energy \tin=1 {\rm GeV}^2. We further derive regions on the real axis and in the complex-energy plane where the form factors cannot have zeros.Comment: 6 pages, 5 figures; Seminar given at DAE-BRNS Workshop on Hadron Physics Bhabha Atomic Research Centre, Mumbai, India October 31-November 4, 2011, submitted to Proceeding

    Phantom Energy Accretion by Stringy Charged Black Hole

    Full text link
    We investigate the dynamical behavior of phantom energy near stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto black hole decreases its mass. Further, the location of critical points of accretion is explored, which yields mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.Comment: 7 pages, no figur

    Unstable Disk Galaxies. II. the Origin of Growing and Stationary Modes

    Full text link
    I decompose the unstable growing modes of stellar disks to their Fourier components and present the physical mechanism of instabilities in the context of resonances. When the equilibrium distribution function is a non-uniform function of the orbital angular momentum, the capture of stars into the corotation resonance imbalances the disk angular momentum and triggers growing bar and spiral modes. The stellar disk can then recover its angular momentum balance through the response of non-resonant stars. I carry out a complete analysis of orbital structure corresponding to each Fourier component in the radial angle, and present a mathematical condition for the occurrence of van Kampen modes, which constitute a continuous family. I discuss on the discreteness and allowable pattern speeds of unstable modes and argue that the mode growth is saturated due to the resonance overlapping mechanism. An individually growing mode can also be suppressed if the corotation and inner Lindblad resonances coexist and compete to capture a group of stars. Based on this mechanism, I show that self-consistent scale-free disks with a sufficient distribution of non-circular orbits should be stable under perturbations of angular wavenumber m>1m>1. I also derive a criterion for the stability of stellar disks against non-axisymmetric excitations.Comment: 15 Pages (emulateapj), 7 Figures, Accepted for Publication in The Astrophysical Journa

    Binary optical communication in single-mode and entangled quantum noisy channels

    Full text link
    We address binary optical communication in single-mode and entangled quantum noisy channels. For single-mode we present a systematic comparison between direct photodetection and homodyne detection in realistic conditions, i.e. taking into account the noise that occurs both during the propagation and the detection of the signals. We then consider entangled channels based on twin-beam state of radiation, and show that with realistic heterodyne detection the error probability at fixed channel energy is reduced in comparison to the single-mode cases for a large range of values of quantum efficiency and noise parameters

    Dual-random ensemble method for multi-label classification of biological data

    Full text link
    This paper presents a dual-random ensemble multi-label classification method for classification of multi-label data. The method is formed by integrating and extending the concepts of feature subspace method and random k-label set ensemble multi-label classification method. Experiemental results show that the developed method outperforms the exisiting multi-lable classification methods on three different multi-lable datasets including the biological yeast and genbase datasets.<br /

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Full text link
    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ0\Lambda\rightarrow0.Comment: 9 pages, no figur
    corecore