24 research outputs found

    Ranking and rating bicycle helmet safety performance in oblique impacts using eight different brain injury models

    Get PDF
    Bicycle helmets are shown to offer protection against head injuries. Rating methods and test standards are used to evaluate different helmet designs and safety performance. Both strain-based injury criteria obtained from finite element brain injury models and metrics derived from global kinematic responses can be used to evaluate helmet safety performance. Little is known about how different injury models or injury metrics would rank and rate different helmets. The objective of this study was to determine how eight brain models and eight metrics based on global kinematics rank and rate a large number of bicycle helmets (n=17) subjected to oblique impacts. The results showed that the ranking and rating are influenced by the choice of model and metric. Kendall’s tau varied between 0.50 and 0.95 when the ranking was based on maximum principal strain from brain models. One specific helmet was rated as 2-star when using one brain model but as 4-star by another model. This could cause confusion for consumers rather than inform them of the relative safety performance of a helmet. Therefore, we suggest that the biomechanics community should create a norm or recommendation for future ranking and rating methods

    Modelling heat generation and temperature distribution during dental surgical drilling

    No full text
    Biomedical InstrumentationBiomedical EngineeringMechanical, Maritime and Materials Engineerin

    Real-time three-dimensional flexible needle tracking using two-dimensional ultrasound

    Get PDF
    Needle insertion is one of the most commonly performed minimally invasive procedures. Visualization of the needle during insertion is key for either successful diagnosis or therapy. This work presents the real-time three-dimensional tracking of flexible needles during insertion into a soft-tissue simulant using a two-dimensional ultrasound transducer. The transducer is placed perpendicular to the needle tip to measure its position. During insertion the transducer is robotically repositioned to track the needle tip. Positioning of the transducer is accomplished via an estimator, that uses the needle insertion velocity corrected by needle tip velocities to estimate out-of-plane motion. Experiments are performed to validate the needle tip pose during tracking. The maximum mean errors in needle tip position along the x-, y- and z-axes are 0.64 mm, 0.25 mm and 0.27 mm, respectively. The error in tip orientations about the y- and z-axes are 2.68 degree and 2.83 degree, respectively. This study demonstrates the feasibility to use needle tip pose feedback to robotically steer needles, and thereby improve accuracy of medical procedures

    Investigating the effect of electrode orientation on irreversible electroporation with experiment and simulation

    Get PDF
    PURPOSE: In recent years, irreversible electroporation (IRE) has been developed to specifically destroy undesirable tissues as an alternative to surgical resection. In this treatment, placing multiple electrodes in parallel is required to create a uniform electric field distribution. The process of maintaining parallel electrodes is challenging, and the effect of the electrodes' orientation accuracy has not been investigated quantitatively. This study investigates the impact of the electrode orientation along with various electrode and pulse parameters on the outcomes of IRE. METHODS: The electrode configurations that were considered were parallel, forward, and sideward orientation. A numerical model was developed to study the effect of electrode orientation on the electric field distribution, which was validated experimentally on potato tubers as it has similar properties to biological tissue. In addition, a conductivity test was performed to evaluate the conductivity and electroporation threshold of the potatoes. RESULTS: The developed numerical model was validated by comparing the electroporated volumes between potatoes from the experiment and simulation, which achieved a mean dice score of [Formula: see text]. The potato has an electrical conductivity of 0.044-0.454 S/m with an electroporation threshold of 375 V/cm. ANOVA test showed that the difference in the electroporated regions obtained between a parallel orientation and a 5[Formula: see text] forward and sideward orientation was not significant. CONCLUSION: This study showed that the developed numerical models were validated and able to predict the outcome of IRE on potatoes. In addition, a 5[Formula: see text] tolerance on the electrode orientation can be defined to obtain a similar response to the parallel orientation

    Development of Haptic Approaches for a Head-Controlled Soft Robotic Endoscope

    Get PDF
    Recent advances in soft robotics are utilized to solve challenges in endoscopy, such as maneuverability, flexibility, and the structural stiffness required to deliver enough force during endoscopic surgical procedure. Other major challenge is the lack of haptic feedback from the tool end-effector to the surgeon. Current clinical practice in minimally invasive intervention requires an assistant to control the camera since the surgeon is preoccupied with task at hand, creating a indirect control procedure for maneuvering the endoscope. For the soft robotic endoscope, we implemented a haptic feedback interface along with a novel control method to concurrently tackle these challenges. The user of the developed system can visualise the planned 2D insertion path and steer the endoscope module accordingly using an inertial measurement unit mounted on a head-band. Furthermore, five different haptic feedback methods (three kinesthetic and two vibrotactile) were compared in term of user accuracy while steering the endoscope along a planned path. The results show that the user's accuracy using kinesthetic and vibrotactile feedback were comparable, however, participants of this study find vibrotactile feedback approach more preferable for its intuitiveness and comfort

    Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue

    Get PDF
    Purpose In this paper, we present a system capable of automatically steering bevel tip flexible needles under ultrasound guidance toward stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to track the needle tip during the procedure. Methods Our system uses a fast sampling-based path planner to compute and periodically update a feasible path to the target that avoids obstacles. We then use a novel control algorithm to steer the needle along the path in a manner that reduces the number of needle rotations, thus reducing tissue damage. We present experimental results for needle insertion procedures for both stationary and moving targets and obstacles for up to 90 mm of needle insertion. Results We obtained a mean targeting error of 0.32±0.10 and 0.38±0.19 mm in gelatin-based phantom and biological tissue, respectively. Conclusions The achieved submillimeter accuracy suggests that our approach is sufficient to target the smallest lesions ( ϕ 2 mm) that can be detected using state-of-the-art ultrasound imaging systems

    A new assessment of bicycle helmets: the brain injury mitigation effects of new technologies in oblique impacts

    No full text
    New helmet technologies have been developed to improve the mitigation of traumatic brain injury (TBI) in bicycle accidents. However, their effectiveness under oblique impacts, which produce more strains in the brain in comparison with vertical impacts adopted by helmet standards, is still unclear. Here we used a new method to assess the brain injury prevention effects of 27 bicycle helmets in oblique impacts, including helmets fitted with a friction-reducing layer (MIPS), a shearing pad (SPIN), a wavy cellular liner (WaveCel), an airbag helmet (Hövding) and a number of conventional helmets. We tested whether helmets fitted with the new technologies can provide better brain protection than conventional helmets. Each helmeted headform was dropped onto a 45° inclined anvil at 6.3 m/s at three locations, with each impact location producing a dominant head rotation about one anatomical axes of the head. A detailed computational model of TBI was used to determine strain distribution across the brain and in key anatomical regions, the corpus callosum and sulci. Our results show that, in comparison with conventional helmets, the majority of helmets incorporating new technologies significantly reduced peak rotational acceleration and velocity and maximal strain in corpus callosum and sulci. Only one helmet with MIPS significantly increased strain in the corpus collosum. The helmets fitted with MIPS and WaveCel were more effective in reducing strain in impacts producing sagittal rotations and a helmet fitted with SPIN in coronal rotations. The airbag helmet was effective in reducing brain strain in all impacts, however, peak rotational velocity and brain strain heavily depended on the analysis time. These results suggest that incorporating different impact locations in future oblique impact test methods and designing helmet technologies for the mitigation of head rotation in different planes are key to reducing brain injuries in bicycle accidents
    corecore