3 research outputs found

    Perspective Chapter: Environmental Assessment on the Effect of Chemical Waste from Dyeing Industries in Zaria

    Get PDF
    The research study was done on groundwater obtained from waste wells, well around the waste wells and wells about 5 km from the dyeing sites of Zaria, in Kaduna state of Nigeria. The objectives were to assess the status of pollution on local dyeing areas, the occupational hazard associated with this activity and the impact on the residents of the area. Parameters such as pH, coli form bacteria, conductivity, colour, DO, BOD, COD, chlorides, total available nitrogen, cadmium, chromium, lead, mercury and alkalinity were determined and statistical analysis carried out to evaluate the Significant difference of pollutants in the area studied

    Virtual screening and pharmacokinetics analysis of inhibitors against tuberculosis: Structure and ligand-based approach

    No full text
    Life-threatening diseases like tuberculosis have raised concerns in the medical and scientific communities. The damage-causing disease makes the scientific community employ the in-silico approach for design of new inhibitors that can inhibit or retard the havoc caused by this deadly disease. The insilico approach was used in this study to create a mathematical model with promising molecular properties, and receptors from the library were used to screen compounds and estimate the kinetic ability of the screened inhibitors that can cure this disease. 2D molecular properties evolved in the built model with high predictive ability. Three inhibitors x, y, and z emerged with better and higher molecular properties, the lowest binding energy (and higher binding affinity), and a better pharmacokinetic assessment compared to the template used in designing the effective compounds, with binding affinities of -15.56 kcal/mol, -18.51 kcal/mol, and -18.58 kcal/mol, respectively. Virtual screening of these compounds showed that they have good binding energy and excellent docking positions with the inhibiting potential of the receptor. Also, pharmacokinetic predictions and ADMET, depict orally active ability of the inhibitors, possess good human intestinal absorption, and violate none of the RO5 as potential drug candidates to cure this disease. Hence, further laboratory tests are recommended for these to determine their toxicities and biological assays

    Properties of Upgraded Bio-oil From Pyrolysis of Waste Corn Cobs

    Full text link
    Technologies for conversion of waste solid materials to liquid fuel and bio-crude oil have been researched widely for the production of renewable energy as substitute to fossil fuel oil. However, ash composition of biomass affects the pyrolysis process and the bio-crude oil product has unsatisfactory properties compared to conventional petroleum oil, such as, low heating value, high viscosity, corrosiveness, and the presence of oxygenated compound which causes bio oil ageing. This paper investigated the total waste materials; corn cobs and paper sludge obtained in municipal areas of Abuja, Nigeria, employed in pyrolysis of demineralized corn cobs and the upgrade of crude bio oil via thermal cracking using zeolite prepared from waste paper sludge, with expectation to improve bio oil properties. Demineralization of corn cob removed most of the ash content of biomass allowing for pyrolysis process. The prepared zeolite with mesoporous cage-like crystals analyzed using SEM was able to effectively catalyze thermal cracking of the crude bio oil and reduce the quantity of less desired high molecular weight oxygenated compounds. The bio oil chemical composition obtained from GC-MS analysis indicated the bio oil consisted of oxygenated compounds and hydrocarbons such as aliphatic hydrocarbons (28.768%), alcohols (-0.001%), amines (10.472%), carboxylic acids (0.144), phenols (0.047%), and esters (60.57 %), which significantly influenced the bio oil properties. The physical and chemical properties of the corn cob bio oil was determined for density (0.852 ± 0.03), viscosity (1.66 ± 0.01), cloud point (-34.0 ± 0.02) and calorific value (30.9 ± 0.01). With the exception of Flash point (58 ± 0.01) and acid value (13.1 ± 0.03). In comparison, the produced bio oil had properties likened to petroleum fraction of conventional gasoline than diesel. In conclusion, pyrolysis of corn cob and upgrade of the crude bio oil using prepared zeolite was found as a promising process in improving bio oil quality. The pyrolysis study has potential in the management of environmental wastes to help resolve the challenge of solid waste disposal
    corecore