35 research outputs found

    An Hp-Adaptive Finite Element Procedure For Fluid-Structure Interaction In Fully Eulerian Framework

    Get PDF
    This thesis attempts to implement a fully automatic hp-adaptive finite element procedure for fluid-structure interaction (FSI) problems in two dimensions. This work hypotesizes the efficacy of Fully Eulerian framework of FSI in hp-adaptivity on an a posteriori error estimator and adaptation for minimization of error in energy norm. Automatic mesh adaptation over triangular elements is handled by red-green-blue (RGB) refinement method. An effective mesh adaptivity to avoid excessive growth of unknowns is also addressed. Since the hp-method uses high order polynomials as approximation functions, the resulting system matrices are less sparse leading to the notion of FSI computation with parallelism. The parallel hp-adaptive computation is assessed with the conventional uniform and h refinement on a number of benchmark test cases. Subsequently, the efficacy of the fully Eulerian framework is compared to the well known Arbitrary Lagrangian Framework( ALE) for two different material models, namely, the St. Venant Kirchoff and the Neo-Hookean models. It was found that the fully Eulerian framework provides accurate FSI predictions for large deformation without need of frequent remeshing. The hp-adaptive method was also found to be a viable approach in obtaining accurate solutions without much compromise in computer memory and time. Furthermore, the integration of parallelism is successful in reducing the computation time by up to two orders of magnitude relative to the serial solver. For the comparisons between the ALE and the fully Eulerian frameworks, the computed solutions in all test cases are observed to be in agreement with each other

    Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    No full text
    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required

    Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method.

    No full text
    This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced

    Calculating the Moduli Elasticity For Reinforced Concrete Using New Rule of Mixtures Approach for the Dam Structure

    No full text
    Dam is the important structure use for water domestic store, electricity power supply, irrigation and flood control. Dam deal with reinforced concrete as a main material in construction. the material considerable safe when ability to support external and internal load. the capability of dam material due to safety is effect by degradation. Prevention monitoring must be conducted for high risk structure. Thus, moduli elastic is a mechanical property to measure stiffness and had relationship between stress and strain of material. While non-destructive and destructive testing in site inspection does not include reinforce and give incorrect moduli elasticity. New approach rule of mixture (Rom) with solid work software refer to United States Department of the Interior Bureau of Reclamation (USBR) standard design for small dam, give reliability monitoring with true sustain modulus elasticity of dam structure time by time. the concrete properties for sustain of moduli elasticity standard type gravity concrete dam value is 20.684 GPa. If the value decreases drastically from the standard, high precaution must be taken
    corecore