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Tatacara Unsur Terhingga Ubahsuai-hp Bagi
Interaksi Bendalir-Struktur Di Dalam Kerangka

Penuh Eulerian

ABSTRAK

Tesis ini cuba melaksanakan prosedur kaedah unsur terhingga ubahsuai-hp

sepenuhnya secara automatik bagi menyelesaikan masalah interaksi bendalir-

struktur (FSI) dalam dua dimensi. Keberkesanan rangka penuh Eulerian pada

FSI menggunakan ubahsuai-hp yang bergantung kepada ralat-a posteriori dan

ubahsuai untuk mengurangkan ralat dalam norma tenaga juga dihipotesis. Adap-

tasi jaringan elemen secara automatik ke atas elemen segitiga dikendalikan melalui

kaedah penghalusan merah-hijau-biru. Isu strategik ubahsuai jaringan elemen

yang berkesan bagi mengelakkan peningkatan element berlebihan juga ditangani.

Disebabkan kaedah ubahsuai-hp menggunakan kuasa polinomial tinggi sebagai

fungsi penghampiran, sistem matrik yang terhasil adalah hampir penuh mem-

bawa kepada konsep pengiraan FSI secara selari. Pengiraan ubahsuai hp selari

dinilai dengan ubahsuai seragam dan h yang konvensional pada beberapa kes

ujian standard. Seterusnya, keberkesanan rangka penuh Eulerian berbanding

kaedah terkenal iaitu Arbitrary Lagrangian Eulerian (ALE) juga dibandingkan

menggunakan dua model bahan berbeza, iaitu, model St. Venant Kirchoff dan

Neo-Hookean. Didapati bahawa rangka penuh Eulerian memberikan ramalan

bendalir-struktur yang tepat untuk deformasi besar tanpa perlu kerap menye-

diakan jaringan element baru. Kaedah ubahsuai-hp juga didapati pendekatan

terbaik bagi mendapatkan penyelesaian yang tepat tanpa banyak tolak ansur

dalam memori dan masa komputer. Integrasi dengan perkomputeran selari pula

telah berjaya mengurangkan masa pengiraan sehingga dua magnitud berbanding

penyelesaian secara bersiri. Bagi perbandingan antara ALE dan rangka penuh

Eulerian, penyelesaian kiraan untuk semua kes ujian didapati hampir sama.
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An hp-Adaptive Finite Element Procedure for
Fluid-Structure Interaction in Fully Eulerian

Framework

ABSTRACT

This thesis attempts to implement a fully automatic hp-adaptive finite element

procedure for fluid-structure interaction (FSI) problems in two dimensions. This

work hypotesizes the efficacy of Fully Eulerian framework of FSI in hp-adaptivity

on an a posteriori error estimator and adaptation for minimization of error in

energy norm. Automatic mesh adaptation over triangular elements is handled by

red-green-blue (RGB) refinement method. An effective mesh adaptivity to avoid

excessive growth of unknowns is also addressed. Since the hp-method uses high

order polynomials as approximation functions, the resulting system matrices are

less sparse leading to the notion of FSI computation with parallelism. The parallel

hp-adaptive computation is assessed with the conventional uniform and h refine-

ment on a number of benchmark test cases. Subsequently, the efficacy of the fully

Eulerian framework is compared to the well known Arbitrary Lagrangian Frame-

work(ALE) for two different material models, namely, the St. Venant Kirchoff

and the Neo-Hookean models. It was found that the fully Eulerian framework

provides accurate FSI predictions for large deformation without need of frequent

remeshing. The hp-adaptive method was also found to be a viable approach in

obtaining accurate solutions without much compromise in computer memory and

time. Furthermore, the integration of parallelism is successful in reducing the

computation time by up to two orders of magnitude relative to the serial solver.

For the comparisons between the ALE and the fully Eulerian frameworks, the

computed solutions in all test cases are observed to be in agreement with each

other.
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CHAPTER 1

INTRODUCTION

Multiphysics analysis of fluid-structure interactions(FSI) poses significant chal-

lenge since it intricately combine aspects in computational fluid dynamics and

computatifonal mechanics; both the latter and former are by themselves major

areas of numerical simulations and active research are still being carried out for

accurate predictions to the physical systems. Industrial applications of FSI in-

clude analysis of aeroelasticity, flutter as well as heat exchanger [35, 56, 100, 82].

In contrast, aside from engineering, substantial research in biomedical field keeps

on growing at a fast pace; analyses of aneurysm in large arteries and of artificial

heart valves [88, 97, 57, 92] are but of few examples.

The driving force for achieving accurate solution of FSI relies heavily on the

performance of computing devices and given recent advances in high performance

computing(HPC), computations of complex coupling of fluid-structure dynamics

are achievable. The past few years have seen profound interest for faster computa-

tions of finite element analysis(FEA) software, and major finite element software

including Abaqus and Ansys, have begun utilising parallelization including multi-

core technology for faster computation time. In this thesis, an OpenMPI software

is used as the multicore parallelization platform on a high performance computer

having 400 cores, separated evenly in a 22 combined master and slave nodes.

Some researchers might argue that the inadequacy of computational devices

can be remedied by optimization of the numerical methodology which includes

development of smart automatic adaptive algorithms that alters the mesh quality

during FSI computation. This is the so called adaptive finite element method that

progresively modifies the initial coarse mesh to rapidly reduce discretization error
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of the coarse mesh. This thesis attempts to solve the FSI problems using an hp-

adaptive finite element method (hp-FEM), by exhaustively searching for elements

with large error indicator and careful decision making algorithm to either refine

the local elements (h) or to increase the element’s polynomial order (p) [84, 18].

To drive the hp-adaptive method, an a posteriori error estimation is intro-

duced. Since discretization error can be large, unpredictable and can deteriorate

the numerical prediction, the a posteriori error estimator play a vital role to

control the meshing, the choice of adaptive algorithms and the reliability of the

computed solutions [9, 93].

Even with optimized adaptive algorithms, as the DOF increases in order of

magnitudes higher, especially in three-dimensional problems, the need for paral-

lelization becomes inevitable. Given the current implementation, the numerical

problems to be explored could be complex and large covering coupled multi-

physics problem which are the essence of FSI. In addition, solution of the FSI

problem should lead to exponential rates of convergence, using fewer DOF com-

pared to conventional uniform refinement, and most importantly cuts the cost of

computation time to a minimum.

Aside from computational performance, complications arise in the setup of

coupled dynamics: fluid is usually modelled in Eulerian coordinates as opposed to

structure which is normally modelled in Lagrangian coordinates. In a Lagrangian

setup, one observes the displacement û(x̂) of mass point x̂ ⊂ Ω̂s in the reference

domain Ω̂s. The advantage of Lagrangian formulation is that it allows an easy

tracking of free surfaces and interfaces between different materials, however, it

suffers from its inability to follow large distortions without recourse to frequent

remeshing.

In contrast, in Eulerian coordinates, the deformation and trajectory of the
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mass points is not a course for concern, instead, the velocity v(x) and pressure

p(x) in spacial points x ∈ Ωf is observed, in which Ωf represents the domain

for fluid region. Computational mesh in Eulerian formulations is fixed and the

continuum moves with respect to the grid. This allows for large distortions to

take place, at the expense of precise interface definition and the resolution of

flow details. Since the Eulerian approach describes the FSI interface in a fixed

mesh, an additional function needs to be introduced to identify the position of the

interface. The most notable interface marker functions are the Level-set method

which detects the position of the free surface by solving for a marker function, φ.

At the interface of FSI, the value of the marker function is φ = 0, while regions

inside the fluid domain have φ < 0 and φ > 0 for domain outside of fluid region.

The dissimilarity in coordinate formulation makes the setup of common vari-

ational formulation difficult. Such variational formulation is desirable and forms

the foundation in approach of residual based error estimation and mesh adap-

tation [33]. In FSI, combination of both Eulerian and Lagrangian coordinates

can be cumbersome. The fluid domain is itself time-dependent and would require

deformation from the structure domain at the interface, whereas in structure, the

fluid boundary values (velocity and normal stress) are needed to account for inter-

actions from fluid to structure part. Both of this cases would require values from

one to the other, leading to loss of accuracy and can be computationally costly.

On account of this problem, a partitioned approached have been implemented

(see for instance [91]); decouple the problem into fluid and structure parts, solve

each equations separately on two separate solvers, and finally iterate the solu-

tion until it converges to the value that satisfies both fluid and structure part as

well as interface conditions. This method however, does not formulate the FSI

equation in a complete variational form [25]. The main advantage of partitioned

approach is that the resulting equations are significantly smaller and generally

better conditioned than the monolithic system [76]. The problem with this ap-

proach however, lies in ensuring the convergence and the stability of coupling
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condition on the FSI interface.

In the monolithic approach, the complete system of nonlinear algebraic equa-

tions arising from the coupled discretization of the equation of motion in the fluid

and structure domain are solved as a whole, typically using Newton’s method.

This approach also permits for better interface conditions as the interface is now

treated as internal interface ensuring more robust modelling of FSI since any

domain splitting errors have been removed. However, the disadvantage of this

approach is significant when dealing with multi-field problem; different scaling of

variables on the interface can lead to poorly conditioned system. In large scale

applications, poorly conditioned systems can cause direct solvers to fail miserably

while indirect solvers can be unstable. Subsequently, the iterative solvers have

to be used in which the efficiency of the monolithic approach relies heavily on

the sophisticated preconditioners. Moreover, implementation of global precondi-

toner and maintaining the state of the art schemes in each each solver is difficult

to achieve, hence, it is unsuitable for applications in large scale problems, e.g.

aeroelasticity, an area which partitioned approach seems more reliable [26].

Despite the common opinions that monolithic formulation is required for mesh

adaptation, this thesis attempts to solve error estimation and mesh adaptation on

partitioned approach, by separately solving for error estimators and mesh adap-

tation in each fluid and structure domain using its respective solver. The mesh

adaptation is done alternately during the FSI computation so that improvement

in discretization error covers both fluid and structure domain. The partitioned

approach will be associated with common variational formulation as part of the

prerequisite for a posteriori error estimation and mesh adaptation. To imple-

ment common variational form for both fluid and structure would require that

both problems being described in one common coordinate system. To do this

would require either fluid or structure coordinate to reside in its natural coordi-

nate system, while the other is formulated in a transformed coordinate system.
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Afterwards, all computations are done on the fixed reference domain and as part

of the computation, the supplementary transformation Tf have to be computed

at each time step. The partitioned and transformation approach to overcome the

Euler-Lagrange discrepancy explicitly tracks the fluid structure interface by mesh

adjustment and are generally referred to as “interface tracking” method in which

both methods leave the structure problem in its natural Lagrangian setting.

Arbitrary Lagrangian Eulerian description is by far the most popular "in-

terface tracking" method [25]. A range of ALE references can be found in

[12, 22, 51, 21]. In ALE formulation, complementary unknown coordinate trans-

formation function is introduced only in the fluid domain since the structure will

remain in its natural coordinate system (Lagrangian). As Lagrangian coordinate

system resides in the undeformed configuration, it is inevitable to introduce an

appropriate transformation function from deformed reference configuration to un-

deformed initial configuration, Ωf , Tf (t) : Ωf → Ω̂f . Thereafter, the computation

is done on the fixed reference domain and since the supplementary transformation

function forms part of the computation of FSI interface conditions, it needs to

computed in each time step.

In the conventional modelling with structure in Lagrangian fashion while fluid

in Eulerian, there is no moving fluid surface mesh to which one could couple the

moving structural surfaces. However with the introduction of transformation

functions, the fluid structure coordinates are rewritten in the same reference

domain that is fixed in time. For the fluid field, ALE method is established that

allows the fluid mesh to be attached to fluid structure interface Γ̂i at all times.

Conversely, in Fully Eulerian coordinates, the interface Γi(t) moves through the

mesh elements and interactions between interface occur at certain points x ∈ Ω

only.

ALE combines the best attributes of both Lagrangian and Eulerian coordi-
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nates, since freedom is given to the nodes of the computational mesh to either

move with the continuum similar to Lagrangian coordinate or be held fixed in

Eulerian manner, or, moved in an arbitrary fashion to enable continuous rezoning

capability. This freedom in mesh movement allows for greater mesh distortion

compared to pure Lagrangian description and better resolution than in pure Eu-

lerian fashion. In spite of ALE’s role in improving mesh distortion, the mesh can

still degenerate as the mesh distortions hit its limit.

As an alternative, both the fluid and structure coordinates can be modelled

in Fully Lagrangian framework. Applications of Lagrangian technique appears

promising when studying problems characterized by large displacement of fluid

structure interface and by a rapidly moving free surface, e.g. FSI inside safety

valves for pressure reduction [3].

For the present project, a variant of ALE and Pure Lagrangian approach is

discussed as introduced by Dunne [25] namely the Fully Eulerian coordinates. In

contrast to ALE method, the Fully Eulerian method maintains the fluid equations

in its natural coordinate(Eulerian) whereas the structure is transformed using the

supplementary transformation function. This function will transform structure’s

Lagrangian coordinate from the undeformed initial configuration to deformed

reference configuration, T̂s(t) : Ω̂s → Ωs. This will be discussed in detail in the

following chapter.

In this thesis, łoosely coupled partitioned fluid structure interaction scheme

is introduced on parallel hp-adaptive method for modelling of various test prob-

lems. This thesis starts off with the description of the governing equations for

partitioned FSI in both natural as well as the transformed coordinates. The

FSI problem is derived on ALE and Eulerian framework on two different mate-

rial models namely St. Venant Kirchoff and Neo-Hookean model. Computations

of the problems discussed are carried out using an open-source finite element re-
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search code [1,25-28]. The computations were all restricted to triangular elements

only. Moreover, conventional stabilization method is applied to discretize the gov-

erning equation, Navier Stokes equation, of the fluid motion [30, 29]. Stabilization

terms are added to the conventional Galerkin formulation of the Navier-Stokes

equations. The linear systems arises from the linearization are solved iteratively

at the expense of direct method since preconditioned iterative solver is more stable

and generally have smaller equations and better conditioned [76]. On top of the

partitioned FSI, hp-adaptivity is applied and is driven to converge in global error

norm separately for fluid and structure domains. An a posteriori error estimator

based on residual estimator is introduced as error indicator for selective selective

hp-adaptive refinement. Furthermore, simple algorithm is introduced following

the approach by Schober and Kasper [77] that decides between h- and p- refine-

ments using the prescribed keypoints where singularities exist. The h- refinement

of triangular elements is based on the red-green-blue refinement technique for bi-

sections of the parent element. To reduce the computation time associated with

large number of degrees of freedom, a parallel domain decomposition technique

is used in tandem with hp-adaptivity [46].

The thesis is organized starting with the Problem statement and Objectives

to be solved in Chapter 1. Subsequently, Chapter 2 explores the Literature Re-

view of adaptive methods, a posteriori error estimation, adaptive method with

parallelism and review on various frameworks associated with fluid-structure in-

teractions. In Chapter 3, the formulation of FSI in Eulerian and ALE frame-

works combined with implementation using STVK and NH material models are

introduced along with some introduction in it coding implementation. Moreover,

Chapter 4 gives some introduction in to hp-adaptivity with parallelism and the

coding side of its implementation.
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1.1 Problem Statements

The ALE method is a well known method to treat fluid structure interaction

problem. However, since the ALE framework still inherits the mesh distortion

features of Lagrangian framework, the mesh is inevitably bound to fail. Donea

and Huerta [21] underlines that ALE method could minimize the problem that

arises in the classical kinematic description, but is prone to fail if mesh distortion

reaches its peak. Richter and Wick [70, 69] distinguish ALE and Eulerian method

in term of the usage of transformation function. In the ALE method, the trans-

formation function, T , is used to transform the flow domain and for large flow

deformation, the ALE approach can break down since severe mesh deterioration

can cause the determinant of deformation gradient, J to turn zero or mount up

to infinity. In the Eulerian method, however, T is used to transform the structure

domain which does not move severely as in the case of fluid flow. Therefore, T

is regularly well defined and the possibility of J approaching zero or infinity is

highly unlikely.

In modelling the hp-adaptivity with ALE framework, the moving boundary

features of ALE globally distorts domain it moves into. In FSI formulation,

mesh refinement is concentrated at the vicinity of FSI interface and the newly

created triangular elements are usually comprises of nearly distorted elements.

Hence, the probability of elements to fail due to mesh distortion caused by moving

boundaries amplify significantly. This problem is sorted with the introduction

of fully Eulerian framework for the whole FSI domain. The main attribute of

Eulerian framework is that its mesh if fixed along with its ability to undergo

large displacement without the need for frequent remeshing. This attributes is

important for FSI formulation since the stability of converged FSI solution is

highly sensitive to element’s distortion.

To the best knowledge of the author, most publications involving adaptive
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FSI involves the use of quadrilateral elements since it is easier to subdivide the

elements and the problem with aspect ratio can be avoided. The trade off with

quadrilateral elements however is its inability to model FSI problems involving

complex geometry.

In addition, the existing formulation of NH includes contribution contribution

of both pressure and displacement contributions which can be cumbersome and

consumes extra computation time for processing of both pressure and displace-

ment contributions. In contrast, the current formulation of NH uses Labelle’s

formulation that requires only contribution for displacement. For the STVK ma-

terial model, same formulation is used with Dunne

Moreover, the implemented hp-adaptive keypoint strategy with FSI problems,

managed to reduce the amount of DOF required to reach low error and accurate

solutions. However, due to complexity of FSI test cases especially for problems

involving many singularity points, huge amount of DOF is still required. It is

suffices to say that hp-adaptivity alone is not capable of reducing computational

effort. With the parallel solver already available for use with existing software and

the availability of HPC computer, the combination of both hp and parallel com-

putation becomes easier to implement to further reduce computational time to a

bare minimum. Extension from serial adaptivity to parallel adaptivity however,

would represent major re-writing of the current serial solver code to parallelized

version.

The combined features of parallel hp-adaptivity with Fully Eulerian framework

is capable of solving complex FSI system with maximum efficacy. The computed

solution is expected to give faster convergence rate within minimum number of

DOF with further reduction in computational time and effort. This is inline with

the main target of this thesis; to develop a procedure for accurate yet efficient

finite element computation of FSI.
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1.2 Objectives

• To develop a method for inclusion of the STVK and NH material models in

the Fully Eulerian setting. The current implementation uses combination

of STVK material model and ALE framework (ALE-STVK). Therefore,

three new combinations namely Eulerian-STVK, ALE-NH and Eulerian-

NH have been implemented to complement the current formulation. The

Eulerian-STVK will follow formulation by Dunne, ALE-NH following La-

belle’s formulation and Eulerian-NH is derived by the author.

• To construct algorithms of h, p, and hp adaptivity in an existing FSI solver

code.

• To develop a residual a posteriori error estimator for application of hp and

h adaptivity for FSI on Fully Eulerian framework based on the three new

combined formulations

• To assess the performance aspect of hp-adaptivity including parallel perfor-

mance with h-adaptivity and uniform refinement method. Both ALE and

Eulerian formulation using hp-adaptivity are tested on a test problem first

established by Dunne et. al.
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CHAPTER 2

LITERATURE REVIEW

2.1 hp-adaptivity

The finite element method is the most widely accepted multi-purpose technique

for numerical solution in applied mathematics and engineering [53]. Its princi-

pal applications include fluid flow, continuum mechanics, thermodynamics and

field theory. With enormous advances in computation power, the finite element

method benefits strongly and multi-field problems involving interactions between

different nature i.e. fluid-structure, fluid-acoustic or even fluid-structure-acoustic

interaction can be modelled with relative ease.

A foundation for formulation of finite element mathematical model was de-

rived by Galerkin [34] which is closely related to the variational principal by Ritz

et. al. [72]. The term finite element method was then firstly introduced by Clough

[15] after its mathematical model was formulated and proposed by Courant [16]

with lack of attention given by researchers during that period. The name was

introduced 5 years after its first engineering applications by Clough et. al. on

structural problems [52]. Various books are available covering the formulation

and derivation of finite element method [103, 87, 42, 11]. It is worth mentioning

that Zienkiewicz and Taylor gives a comprehensive introduction and formulation

of fluid structure interactions [103]. Donea and Huerta formulated FSI on ALE

framework and give some illustrated applications of FSI problems for industry

[22].

The finite element method however is prone to discretization error and the

need to control the error is a necessity for reliable and fast convergent finite

element solutions [85]. For the past 20 years, vast amount of researches conducted
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to find optimal strategies to guarantee rapid convengence of error in computed

problems [84]. Three types of refinement strategy have been explored up to date

namely:

• h-refinement which refine or coarsen local mesh

• p-refinement which increase or decrease the polynomial order of the basis

function

• r-refinement which involves relocation or moving the nodes to improve el-

ement’s aspect ratio

In comparison, r-refinement is more suited with transient problems, however,

r-refinement alone is unable to find solution with specified accuracy and if the

mesh is too coarse achieving the required convergence is fairly difficult unless more

elements is added and the polynomial order is increased. h-refinement is byfar

the most used refinement method given its ability to augment convergence rate

even with the presence of singularity. Likewise, p-refinement too can speed up

convergence and in the case of smooth solution exponential rate of convergence

is achievable. Despite this advantage, the downside is that p-refinement does

not perform as well in the presence of singularities where solution is rather non-

smooth. Furthermore, p-refinement introduces fully populated mesh that could

increase the computational time substantially. Given that both h-refinement

and p-refinement having their own advantageous and disadvantageous, optimized

mesh can be achieved by combining both the h- and p- refinement. This is the

well known hp-adaptive method.

The pionering work for hp-adaptive method rooted back to the work by Szabo

et. al [7, 87]. Based on his research, applying only p-adaptive method while fixing

the mesh could give exponential rate of convergence given that the problem is

simple, i.e. unit cubes with periodic boundary condition. In practice, achieving
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such convergence requires the problem to be free of singularities that regularly

present in corners and material interfaces. Huge amount of literatures have been

attributed to finding the right the combination of h and p-adaptivity but in most

cases it boils down to the whether non-smooth solution or singularities is present

in the domain. Babuska and Vogelius found that in the absence of singularities

where the solution is smooth, the rate of convergence for p-adaptive method is two

times faster compared to h-adaptive method [96]. However, when the solution is

non-smooth, the rate of convergence for p-method is the same as h-method when

refinement is based on uniform mesh refinement[87].

Unlike the p-method, the h-method is independent of the smoothness of the

solution and given that optimal or nearly optimal mesh is used the rate of con-

vergence of h-method is equal to the p-method. It would be easy to just resort to

the p-method, however, the main concern of the p-adaptive method is that it pro-

duces more densely populated matrices which proves to be major stumbling block

in terms of computational storage [84]. Therefore, in finding the compromise be-

tween computational storage and problems relating to singularity, the hp-method

is introduced. In this thesis, the h-method is prefered in regions where singular-

ities are located, while to boost the rate of convergence, a p-adaptive method is

applied elsewhere. In theory, it is expected that hp-FEM could produce fastest

convergence of solution in a given error norm and generally achieves exponential

rate of convergence, thereby producing acccurate solution within smallest number

of degrees of freedom (DOF) compared to conventional uniform refinement [87].

To the author’s knowledge, efforts at using an adaptive FEM approach in FSI

computations, in particular hp-FEM are still considerably scarce. Historically,

the use of high order elements is concentrated on problems relating to solid me-

chanics application, however Dubiner [24] applied high order spectral method for

simulation of Navier-Stokes equation in a periodic pipe. Following on his path,

Schwab [78] gives a comprehensive discussion on p- and hp-adaptivity for appli-
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cation on fluid and solid mechanics problems. Initial effort on hp-adaptivity with

FSI is contributed on the work by Oden which investigate multiscale phenomena

in FSI test case [58].

Recently, the work of Van der Zee which is also based on goal-oriented error

estimator, and applied on a fluid domain in contact with elastic boundary rather

than elastic domain [19]. The problem can be categorized as free boundary prob-

lems with the fluid part modelled using Stokes flow model and the elastic domain

is formulated using low-order structure line or string model. The key contribution

by Van der Zee is the formulation of FSI using domain map linearization approach

in which the linearized dual problem is derived by taking into account the do-

main geometry of FSI problems. In terms of adaptivity, however, no particular

attention is paid on application of the FSI problems using high order elements

and only h-adaptive refinement method is used for application on a number of

FSI problems.

Moreover, large amount of literature on FSI are based on interactions of fluid

domain with fixed rigid structures [62, 4]. The hp-adaptive method based on

a posteriori error estimator is applied to compute free vibrations of a bundle

of tubes of various shapes being immersed in an incompressible fluid contained

in a rigid cavity. In comparison to the current implementation in this thesis,

h-refinement is conducted by only using Red refinement critea where four new

elements is introduced which sometimes might lead to excessive growth of h-

refinement. Moreover, for the error indicator, comparison of the current local

estimated error with a prediction of this error obtained from the preceding step

to decide whether to proceed with h or p refinement. On the contrary, this thesis

utilizes residual based a posteriori error estimator.

Furthermore, Fick et. al. applied fluid-structure problems on an adaptive time

dependent finite element formulation [27]. The fluid is modelled using simplified
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inviscid fluid and for the structure, its kinematic is modelled using Euler-Bernoulli

beam. Goal-oriend adaptivity on h and hp method are applied to a set of FSI

problems being analyzed using adjoint-consistent disretization. Based on their

findings, tremendous savings in computational cost can be realized through the

use of adjoint-consistent goal-oriented refinement strategies. The goal-oriented

approach also successfully equilibrates the error contributions of the FSI prob-

lems.

In addition, Bengzon and Larson modelled the one-way coupling of stationary

FSI problem on h-adaptive method [13]. The structure model is formulated using

linear elasticity model and the fluid domain is modelled using Stokes flow. The

paper however does not present any results with regards to efficiency of adaptive

method with FSI problems.

Selim develop and analyze h-adaptive element method for fully coupled, time

dependent FSI problems [80]. To drive the adaptive method, an a posteriori error

estimator based on the solution of auxiliary linearized dual problem is solved

to control the error in a given goal functional of interest. Selim also explored

the use of operator splitting method in the computation of the FSI numerical

solution. The fluid subproblem is solved using inconsistent splitting method while

the structure and mesh subproblem are solved using pure Galerkin method. The

FSI formulation is then tested on a number of test cases to demonstrate the

efficiency of adaptive algorithm.

Substantial contributors also in this area of research are arguably made by

Dunne and Rannnacher, Richter andWick who proposed goal-oriented h-adaptivity

on FSI problems [25, 69]. Dunne et. al. investigated the monolithic formulation

of FSI problems involving incompressible Newtonian fluid interacting with two

different material models namely St. Venant Kichoff and Neo-Hookean material

model. The formulation of Neo-Hookean material used in Dunne’s formulation
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makes use of both displacement and pressure contributions which can be cumber-

some to solve. Labelle on the other hand introduces Neo-Hookean formulation

that involves only contributions from displacement which in turn reduces the com-

plexity of Neo-Hookean formulation [50]. Moreover, Dunne et. al. also focuses

application of adaptive methods on quadrilateral which could be challenging to

implement in complex shape geometry. Based on the knowledge of the author,

evidently no attempt has been made by the group to implement their current

adaptive FSI formulation on parallel architecture.

2.2 A posteriori error estimator

The term error estimator is usually distinguishable to two different types namely

a priori and a posteriori error estimates; the former are based on some general

information about the exact solution that is generally not know or know very

inaccurate while the latter are based upon additional information from the finite

element solution e.g. residual values or other computable quantities and this

value is vary accurate [87]. From the standpoint of engineering applications, the a

priori error estimates makes use of the information from the exact solution which

is not identifiable for many real world applications leading to the need for proper

constructions of a posteriori error estimators. The pioneers on the formulation

of a posteriori error estimates for finite element methods was initially explored

by Babuska [34, 6, 51]

An in-depth research for a posteriori error estimation has been done by

Ainsworth and Oden and has found applications in huge number of scientific

programs and commercial softwares [1]. Segeth derived a posteriori error estima-

tor for Navier-Stokes equation and linearized elasticity problem [79]. Zienkiewicz

in his paper gives a detail introduction on error estimators for application with

various adaptive methods [102]. In this thesis, explicit error estimator is used

that computes error indicator using residual value obtained for each element of
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fluid’s or structure’s numerical formulation. In comparison to explicit error es-

timator, the implicit method are known to be more reliable in the presence of

polution, however they are proven to be costly as the polynomial order increases

[77]. Likewise, the recovery method are unreliable for higher polynomial order

and also unable to treat polution effects [6]. For this reasons, the explicit method

supersedes both methods in terms of treating high order system as long as the

solution has high regularity and generally requires lesser amount of computation

time. The drawback of explicit method however, is its inability to guarantee error

bounds at corner singularities and does not recognize numerical phase lag in wave

problems.

In this thesis, Melenk and Wohlmuth [55] error estimator that includes the

effect of polynomial change in the calculation of local error estimation is applied.

This is in contradiction to the ones given by Ainsworth and Oden [1] and Verfuth

[94] that neglects the contribution of polynomial order in error estimator calcula-

tions. The new error indicator does not underestimate local error indicator and

generally leads to graded mesh at region of singularities.

2.3 Parallel hp-adaptivity

Earliest efforts on parallel hp-adaptivity follow the work by Oden and Patra

[59] as well as Devine and Flaherty [20]. Moreover, Paszynski and Demkowicz

explored parallel hp-adaptivity for three dimensional application of Elliptic and

Maxwell problems [64]. Following these efforts, application of Schur Complements

on parallel hp adaptivity is done by Paszynski et. al. [65].

Recently Hron and Turek published a paper on ALE approach to monolithic

FSI for application in biomechanics and highlights the importance of fast solver

in solving very large linear systems involving fluid-structure interactions [40].

Hoffman et. al. implement parallel h-adaptivity on various three dimensional
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model of monolithic FSI problem based on combination of ALE framework and

Neo-Hookean material model [38].

Ballman et. al. tries to solve parallel h-adaptivity of FSI problems using

partitioned FSI; the fluid domain is solved using Finite Volume Method while the

structure is solved using Finite Element method [8]. In this paper a geometrical

and load tranfer between Finite Element method and Finite Volume method are

constructed to satisfy the same energy balance as the continuous system. This

sort of FSI formulation is capable of detecting wake vortices as far as some 100

wing spans behind airplance, which could be hazardous to the airplane being

modelled. Therefore, the aim of Ballman’s research is to induced instablities into

the system of vortices to accelerate their allevation.

Interestingly, none of the above parallel adaptive methods tries to solve adap-

tivity using triangular elements. Based on the author’s findings, the formulation

of adaptivity of quadrilateral elements are relatively simpler, however, triangu-

lar elements are much better suited for application on problems having highly

complex geometrical shape.

2.4 FSI framework: ALE, Eulerian and Lagrangian approach

In combining both Lagrangian and Eulerian formulation in a partitioned FSI

setting requires tracking of FSI boundary for the fluid’s spatial domain as a re-

sult of deformation in the structure domain. This process requires mesh update

to ensure in the fluid domain to satisfy the boundary conditions altered during

structure’s deformation. Its possible to just move the mesh accordingly however

without proper mesh update algorithm would result in poor mesh quality that

affects the stability and convergence of the numerical FSI solutions. Given this

fact, additional mesh update equation is introduced in the current FSI formu-

lation to ensure stability and quality of the moving FSI boundary interface. A
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well known numerical formulation to handle this sort of problem is the so called

Arbitrary Lagrangian Eulerian (ALE) formulation. The work on ALE method

dated back to initial work by Huerta and Liu by using ALE to study nonlinear

viscous fluid under large free surface wave motion for applications on a dam-break

and tsunami problem [41]. Among huge contributors for ALE with FSI problem

is denoted on the work by Turek et. al. with a number of benchmarking test case

proposed for FSI problems [89, 90, 91]. Rugonyi and Bathe [75], describes ALE

formulation on a fully coupled fluid-structure interactions with some emphasize

on stability analysis on the interface equations and choices of time integration

schemes.

Alternatively, the FSI problem can be formulated on Fully Eulerian frame-

work. In fully eulerian framework, since the material points move relative to

fixed mesh, a phase variable is employed to distinguish between fluid and struc-

ture domains. This method is commonly known as “interface capturing” method.

The Level Set(LS) method and the Volume of Fluid(VOF) is a example of such

phase variable implementation. The former pioneered by Osher and Ethian [61]

has been successfuly employed to treat complex flow problems involving changes

in topology, i.e. surface breakup and moving boundaries. In the LS method,

the boundary of the interior fluid layer is tracked while in the VOF method, the

motion of the interior region is tracked. The advantage of VOF method is that

complicated topological are easily treated, however, it suffers from difficulty to ac-

curately calculate the curvature [81]. For this reason, LS method is the preferable

option due to its ability to accurately track the boundary of the fluid. Morever,

the LS method is capable of computing interface singularities, for instance, cor-

ners, merging and reconnection of surfaces [23]. The problem with LS method

is that it is susceptible to numerical dissipation leading to poor mass conserva-

tion property [98]. This drawback however, is remedied by using reinitialization

technique by keeping the level set as a distance function and enforcing mass

conservation. Chang, Hou, Merriman and Osher implemented the LS method for
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interface capturing of incompressible fluid flow problem [14]. Following this effort,

Deiterding investigates the adaptive LS method on shock-driven FSI problem by

employing finite volume as ghost shell and the interface of FSI is tracked using LS

function, φ [17]. Sugiyama et. al. examines the numerical accuracy associated

with modelling of LS method on FSI problems for NH, STVK and Mooney-Rivlin

material models [86].

As an alternative, both the fluid and structure coordinates can be modelled

in Fully Lagrangian framework. Applications of Lagrangian technique appear

promising when studying problems characterized by large displacement of fluid

structure interface and by a rapidly moving free surface e.g. FSI inside safety

valves for pressure reduction [3]. In a Fully Lagrangian framework the convective

terms can be omitted since the motions of individual particles are followed. As

a result, the nodes can be viewed a moving particles or commonly called “Par-

ticle Method”. A large literature of fully Lagrangian formulation is available for

reference; refer [60] for particle method method with Smoothed Particle Hydro-

dynamic(SPH) and [44, 101] for particle method with Meshless Finite Element

Method(MFEM). The disadvantage of particle method lies in the necessity of

frequent mesh regeneration and efficiently moving the mesh nodes.

The formulation of mass conservation and momentum equation to model solid

and structure is insufficient to give good distinction between one solid material to

the other or from one type of fluid to the other. For this reason, different consti-

tutive laws are constructed depending on the type of material e.g. elastic or hy-

perelastic model for the structure domain. The mathematical model to formulate

material behaviour ensures accurate modelling of fluid and structure interaction

which is problem specific. The commonly used constitutive equation to model

hyperelastic structure are the St. Venant Kirchhoff and Neo-Hookean material

model. A comprehensive insight into the two constitutive laws for hyperelastic

materials can be found in [12, 43, 36, 39]. For the fluid domain, it is modelled
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using the so called Navier Stokes equations and for this thesis the incompressible

assumption is incorporated for ease of FSI modelling. Complete coverage of fluid

modelling using Navier Stokes equation can be found in [22, 63, 99]
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CHAPTER 3

FE PROCEDURES FOR FLUID-STRUCTURE
INTERACTION

3.1 Fluid model in Eulerian formulation

For the rest of this section, the derivations of FSI on ALE and Eulerian using two

different material models, St. Venant Kirchhoff and Neo-Hookean material mod-

els is followed closely as given by Dunne et al [33]. Note that common symbols

are referred to the list of symbols since some may not be defined in the following

chapter.

For the fluid, a Newtonian incompressible fluid is observed governed by the equa-

tions based on the conservation of mass and momentum. The equations are set

in an Eulerian framework in the time-dependent domain Ωf (t) with the pressure

field pf ∈ Lf and the velocity vector field vf ∈ vDf +V D
f as the variables. Here vDf

is a suitable extension of the prescribed Dirichlet data on the boundaries (both

moving or stationary) of Ωf (t), and g1 is a suitable extension to all of ∂Ωf of the

Neumann data for σf · n on the boundaries.

The variational form of the Navier Stokes equations in an Eulerian framework is

obtained by multiplying them with suitable test functions, ψ from the test space

V 0
f for the momentum equation and Lf for the mass conservation equation. The

equation in the variational form is written as:

Find [vf , pf ] ∈ [vDf + V 0
f ]× Lf , such that vf (0)= v0

f , and

(ρ∂v
∂t

+ ρ(v · 5)v, ψ) + (5 · σ, ψ) = (g1, ψ)∂Ω + (f1, ψ), (3.1)

(div(v), ψ) = 0. (3.2)
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for all [ψv, ψp] ∈ V 0
f × Lf , where

σf = −pI + 2ρfνfε(v)

ε(v) = 1
2(5v +5vT )

Eq. 3.1 and 3.2 is the variational form of the Navier-Stokes equations.

3.2 Fluid model in ALE formulation

To derive the fluid’s model in ALE framework [12], consider the problem governed

by the incompressible Navier-Stokes equations

(
ρ
∂v

∂t
+ ρ(v · 5)v, ψ

)
+ (5 · σ, ψ) = (g1, ψ)∂Ω + (f1, ψ), (3.3)

(div(v), ψ) = 0. (3.4)

The ALE framework requires description of motion of the mesh and material

motion. The motion of the material is given by a function of material coordinate,

X

x = φ(X, t) (3.5)

which maps the body in the initial configuration Ω0 to the current or spatial

configuration Ω. Figure 3.1 depicts the relationship between ALE coordinate to

the spatial and material coordinates.

As shown in Figure 3.1, the ALE framework introduces referential domain

Ω̂ that is also called ALE domain. Therefore, the motion of the mesh can be

described as a function of ALE map as follow:

x = φ̂(χ, t), (3.6)
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Figure 3.1: Lagrangian, Eulerian and ALE domains map [12]

where the ALE domain describes the motion of the mesh independent from the

material motion. The map φ̂ plays a pivotal role in the derivation of finite element

problem in ALE framework since it maps point x in the spatial or deformed

domain to the point χ in the ALE domain. Consider a function f(χ, t) and using

the chain rule, the material time derivative in ALE framework is defined as

Df

Dt
= ∂f(χ, t)

∂t
+ ∂f(χ, t)

∂χi

∂ψi(X, t)
∂t

(3.7)

where the referential particle velocity wi is given as

wi = ∂Ψi(X, t)
∂t

= ∂χi
∂t
|X (3.8)

and finally after substitution of Eq. (3.8) in to (3.7) will give the following

expression:

Df

Dt
= ∂f

∂t
+ ∂f

∂χi
wi (3.9)

Notice that in general wi(X, t) = v(X, t) in which v representing material velocity.

However, two particular cases can be distinguished:
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