5 research outputs found
Observations of a GX 301-2 Apastron Flare with the X-Calibur Hard X-Ray Polarimeter Supported by NICER, the Swift XRT and BAT, and Fermi GBM
The accretion-powered X-ray pulsar GX 301-2 was observed with the balloon-borne X-Calibur hard X-ray polarimeter during late December 2018, with contiguous observations by the NICER X-ray telescope, the Swift X-ray Telescope and Burst Alert Telescope, and the Fermi Gamma-ray Burst Monitor spanning several months. The observations detected the pulsar in a rare apastron flaring state coinciding with a significant spin-up of the pulsar discovered with the Fermi GBM. The X-Calibur, NICER, and Swift observations reveal a pulse profile strongly dominated by one main peak, and the NICER and Swift data show strong variation of the profile from pulse to pulse. The X-Calibur observations constrain for the first time the linear polarization of the 15-35 keV emission from a highly magnetized accreting neutron star, indicating a polarization degree of (27+38-27)% (90% confidence limit) averaged over all pulse phases. We discuss the spin-up and the X-ray spectral and polarimetric results in the context of theoretical predictions. We conclude with a discussion of the scientific potential of future observations of highly magnetized neutron stars with the more sensitive follow-up mission XL-Calibur
Discovering the highest energy neutrinos with the Payload for Ultrahigh Energy Observations (PUEO)
The Payload for Ultrahigh Energy Observations (PUEO) is a NASA Long-Duration Balloon Mission that has been selected for concept development. PUEO has unprecedented sensitivity to ultra-high energy neutrinos above 1018 eV. PUEO will be sensitive to both Askaryan emission from neutrino-induced cascades in Antarctic ice and geomagnetic emission from upward-going air showers that are a result of tau neutrino interactions. PUEO is also especially well-suited for point source and transient searches. Compared to its predecessor ANITA, PUEO achieves better than an order-of-magnitude improvement in sensitivity and lowers the energy threshold for detection, by implementing a coherent phased array trigger, adding more channels, optimizing the detection bandwidth, and implementing real-time filtering. Here we discuss the science reach and plans for PUEO, leading up to a 2024 launch
The Payload for Ultrahigh Energy Observations (PUEO): a white paper
The Payload for Ultrahigh Energy Observations (PUEO) long-duration balloon experiment is designed to have world-leading sensitivity to ultrahigh-energy neutrinos at energies above 1 EeV. Probing this energy region is essential for understanding the extreme-energy universe at all distance scales. PUEO leverages experience from and supersedes the successful Antarctic Impulsive Transient Antenna (ANITA) program, with an improved design that drastically improves sensitivity by more than an order of magnitude at energies below 30 EeV. PUEO will either make the first significant detection of or set the best limits on ultrahigh-energy neutrino fluxes
The Payload for Ultrahigh Energy Observations (PUEO): A White Paper
The Payload for Ultrahigh Energy Observations (PUEO) long-duration balloon
experiment is designed to have world-leading sensitivity to ultrahigh-energy
neutrinos at energies above 1 EeV. Probing this energy region is essential for
understanding the extreme-energy universe at all distance scales. PUEO
leverages experience from and supersedes the successful Antarctic Impulsive
Transient Antenna (ANITA) program, with an improved design that drastically
improves sensitivity by more than an order of magnitude at energies below 30
EeV. PUEO will either make the first significant detection of or set the best
limits on ultrahigh-energy neutrino fluxes.Comment: 37 pages, 17 figures. Minor updates, version submitted to JINS