6 research outputs found

    Quantum-critical superconductivity in underdoped cuprates

    Full text link
    We argue that the pseudogap phase may be an attribute of the non-BCS pairing of quantum-critical, diffusive fermions near the antiferromagnetic quantum critical point. We derive and solve a set of three coupled Eliashberg-type equations for spin-mediated pairing and show that in some TT range below the pairing instability, there is no feedback from superconductivity on fermionic excitations, and fermions remain diffusive despite of the pairing. We conject that in this regime, fluctuations of the pairing gap destroy the superconducting condensate but preserve the leading edge gap in the fermionic spectral function.Comment: 5 pages, 3 figure

    A phenomenological description on an incoherent Fermi liquid near optimal doping in high T_{c} cuprates

    Full text link
    Marginal Fermi-liquid physics near optimal doping in high T_{c} cuprates has been explained within two competing scenarios such as the spin-fluctuation theory based on an itinerant picture and the slave-particle approach based on a localized picture. In this study we propose an alternative scenario for the anomalous transport within the context of the slave-particle approach. Although the marginal Fermi-liquid phenomenology was interpreted previously within deconfinement of the compact gauge theory, referred to as the strange metal phase, we start from confinement, introducing the Polyakov-loop parameter into an SU(2) gauge theory formulation of the t-J model. The Polyakov-loop parameter gives rise to incoherent electrons through the confinement of spinons and holons, which result from huge imaginary parts of self-energy corrections for spinons and holons. This confinement scenario serves a novel mechanism for the marginal Fermi-liquid transport in the respect that the scattering source has nothing to do with symmetry breaking. Furthermore, the incoherent Fermi-liquid state evolves into the Fermi liquid phase through crossover instead of an artificial second-order transition as temperature is lowered, where the crossover phenomenon does not result from the Anderson-Higgs mechanism but originate from an energy scale in the holon sector. We fit an experimental data for the electrical resistivity around the optimal doping and find a reasonable match between our theory and the experiment.Comment: 15 pages. 5 figure. Title has been changed. Final version publishec in J. Phys.: Condens. Matter 23 (2011) 49570

    Singularities in the optical response of cuprates

    Full text link
    We argue that the detailed analysis of the optical response in cuprate superconductors allows one to verify the magnetic scenario of superconductivity in cuprates, as for strong coupling charge carriers to antiferromagnetic spin fluctuations, the second derivative of optical conductivity should contain detectable singularities at 2Δ+Δspin2\Delta +\Delta_{\rm spin}, 4Δ4\Delta, and 2Δ+2Δspin2\Delta+2\Delta_{\rm spin}, where Δ\Delta is the amplitude of the superconducting gap, and Δs\Delta_{s} is the resonance energy of spin fluctuations measured in neutron scattering. We argue that there is a good chance that these singularities have already been detected in the experiments on optimally doped YBCOYBCO.Comment: 6 pages, 4 figure

    Spin orthogonality catastrophe in two-dimensional antiferromagnets and superconductors

    Full text link
    We compute the spectral function of a spin S hole injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. We show that, near van Hove singularities, the problem maps onto that of a static vacancy carrying excess spin S. The hole creation operator is characterized by a new boundary anomalous dimension and a vanishing quasiparticle residue at the critical point. We discuss possible relevance to photoemission spectra of cuprate superconductors near the anti-nodal points.Comment: (v1) 4 pages, 2 figures; field theory afficionados - see also cond-mat/0011233; (v2) added figure of Monte Carlo data; (v3) corrected typo

    Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes

    Full text link
    We describe two dimensional models with a metallic Fermi surface which display quantum phase transitions controlled by strongly interacting critical field theories below their upper critical dimension. The primary examples involve transitions with a topological order parameter associated with dislocations in collinear spin density wave ("stripe") correlations: the gapping of the order parameter fluctuations leads to a fractionalization of spin and charge collective modes, and this transition has been proposed as a candidate for the cuprates near optimal doping. The coupling between the order parameter and long-wavelength volume and shape deformations of the Fermi surface is analyzed by the renormalization group, and a runaway flow to a non-perturbative regime is found in most cases. A phenomenological scaling analysis of simple observable properties of possible second order quantum critical points is presented, with results quite similar to those near quantum spin glass transitions and to phenomenological forms proposed by Schroeder et al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark

    Neutron resonance in the cuprates and its effect on fermionic excitations

    Get PDF
    We argue that the exciton scenario for the magnetic resonance in the cuprate superconductors yields a small spectral weight of the resonance, in agreement with experiment. We show that the small weight is related to its concentration in a small region of momentum and energy. Despite this, we find that a large fermionic self-energy can indeed be generated by a resonance with such properties, i.e., the scattering from the resonance substantially affects the electronic properties of the cuprates below Tc
    corecore