
VOLUME 89, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 21 OCTOBER 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure
Neutron Resonance in the Cuprates and its Effect on Fermionic Excitations

Ar. Abanov,1 A.V. Chubukov,2 M. Eschrig,3 M. R. Norman,4 and J. Schmalian5

1Theory Division, Los Alamos National Laboratory, MS B262, Los Alamos, New Mexico 87545
2Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

3Institut für Theoretische Festkörperphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
4Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

5Department of Physics, Iowa State University, Ames, Iowa 50011
(Received 11 December 2001; published 4 October 2002)
177002-1
We argue that the exciton scenario for the magnetic resonance in the cuprate superconductors yields a
small spectral weight of the resonance, in agreement with experiment. We show that the small weight is
related to its concentration in a small region of momentum and energy. Despite this, we find that a large
fermionic self-energy can indeed be generated by a resonance with such properties, i.e., the scattering
from the resonance substantially affects the electronic properties of the cuprates below Tc.
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This effect is specific to dx2�y2 superconductors and has
no analog for s-wave superconductors [7]. Moreover, by

in overdoped materials, but progressively deviates to
lower energies with underdoping, as would be expected
The magnetic resonance observed in inelastic neutron
scattering experiments in both two-layer (YBCO [1,2]
and Bi2212 [3]) and single-layer (Tl2201 [4]) cuprates
is one of the most striking features of high Tc super-
conductors. For doping concentrations, x, greater than
optimal doping, a sharp peak emerges at Tc and is reso-
lution limited in energy at low T. For x less than opti-
mal doping, a broadened version appears at a pseudogap
temperature T�, and then narrows in energy below Tc.
The energy of the peak, �res, is found to scale with Tc for
all dopings. The peak is centered at momentum Q �
��;��, and is part of a collective mode dispersion, with
weaker incommensurate ‘‘side branches’’ extending to
lower energies [5] .

One of the main issues related to the resonance is
whether it can account for the measured changes in the
fermionic properties of the cuprates below Tc, via a feed-
back effect similar to the Holstein effect in phonon
mediated superconductors. It is not obvious that this
effect is strong, since the total experimental spectral
weight of the resonance peak, I0 �

R
S�q;��d2qd�=

�8�3�, is only a few percent of the local moment sum
rule [6], S�S� 1�=3 � 1=4.

In this paper, we address the issue of whether the
smallness of the integrated intensity of the peak pre-
cludes strong effects on the fermions. Our main result is
that the fermionic self-energy due to scattering from the
resonance is strong and unrelated to the small integrated
intensity of the peak. We also discuss the relation between
the resonance peak and the condensation energy

The origin of the resonance has been the subject of
intense debate in recent years. Most theories find that the
resonance is a spin exciton that does not exist in the
normal state, but emerges in the superconducting state
(or, more accurately, when electrons acquire a gap) due to
a feedback from the pairing on spin collective excitations.
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kinematic constraints, the peak at momentum Q is due to
fermions in the near vicinity of the ‘‘hot spots’’ on the
Fermi surface (points separated by Q). For a dx2�y2 super-
conductor with a Fermi surface such as that observed
experimentally, these fermions have a large gap, �. As
a result, spin collective excitations have no damping at
T � 0 up to an energy 2�. As the spin exciton is pulled
below this 2� continuum, it has a zero linewidth unless
other effects, such as impurity scattering [8] and (for Tc <
T < T�) the pseudogap, are incorporated. The displace-
ment of �res to lower energies from 2� increases with
underdoping as the spin-fermion coupling gets larger.

By analogy with the Holstein effect, the emergence of
the resonance in the exciton scenario should affect the
electronic properties of the cuprates: it can give rise to the
peak-dip-hump features in the fermionic spectral func-
tion, most prominent near the ��; 0� points [9] where the
peak-dip separation equals the resonance energy [10,11].
It also yields the kink in the quasiparticle dispersion
along the ��;�� direction [12], with the kink energy
near ���res [13], the dip in the density of states at
about the same energy, and the dip in the SIS tunneling
conductance [14] and in the optical conductivity [15] at
2���res [16,17]. It can also cause subgap peaks in SNS
junctions [18]. The issue we address here is the strength of
these effects.

From an experimental perspective, the features that
could be interpreted as being due to scattering from the
resonance have been observed in angle resolved photo-
emission (ARPES) spectra, SIN and SIS tunneling spec-
tra, and optical conductivity measurements on Bi2212 at
various doping concentrations [19]. Furthermore, the
resonance energies inferred from ARPES [20] and SIS
[14] measurements as a function of doping match �res as
measured directly by neutron scattering. The mode ex-
tracted from SIS experiments [14] is located very near 2�
2002 The American Physical Society 177002-1
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of a collective excitation inside a continuum gap [14]. In
addition, the real part of the fermionic self-energy at the
node as a function of temperature has been shown to scale
with the resonance intensity [12]. It has been claimed,
however, that other effects such as bilayer splitting, par-
ticularly in the overdoped cuprates [21], and scattering
from phonons [22], can also account for these data.

There are two key points to address in the analysis of
the feedback effect on fermions: the values of the spin-
fermion coupling g and the dimensionless coupling con-
stant �, and the dependence of the self-energy on the
integrated intensity of the peak.

Consider first the issue of the spin-fermion coupling, g.
It is defined via the spin-fermion model:

H � Hferm �Hspin � gS y� : (1)

The most straightforward way to extract g is to fit the
position of the maximum of the spin susceptibility
�00�Q;�� in the normal state. Experimentally, this maxi-
mum is located at 20–25 meV in optimally doped YBCO
[2]. The data are consistent with a relaxational form for
the susceptibility, ��1�Q;�� � ��1

Q � i����, whose
imaginary part has a maximum given by ���max� �
��1
Q . Here ���� is the imaginary part of the fermionic

bubble times g2, which can be most easily seen by consi-
dering the fermionic bubble as a self-energy insertion in
the bosonic (spin fluctuation) propagator (an equivalent
expression is obtained in the random phase approxima-
tion). The fermionic bubble is easily calculated by linear-
izing the dispersion about the hot spots (�k �
vxkx � vyky, �k�Q � vxkx � vyky) and summing over
all 8 hot spots. The result is [11,23]

���� � 2g2�=��vxvy�: (2)

At the hot spots, vx 	 vy 	 vF=
���
2

p
, where vF is the

Fermi velocity at the hot spots. Using the experimental
�Q � 13 states=eV [24], �max � 20 meV, and vF �
0:4 eV [25] (in units where the lattice constant is 1) we
then obtain g� 1:75vF � 0:7 eV.

The dimensionless coupling � can be extracted from
the fermionic self-energy at the lowest !: Re��!� �
��!. At the same level of approximation as Eq. (2),
��k; !� is determined as 3g2 times a convolution of
��q;�� with G0�k� q; !��� (G0 is the fermion
Green’s function, and the factor of 3 is due to spin sum-
mation). Again, linearizing the fermionic dispersion
about the hot spots, and expanding � quadratically about
Q with a correlation length �, we obtain [23]

� � 3g2�Q=�4�vF�� � 3vF=�16�max��: (3)

Substituting the above numbers and �� 2, we find �� 2.
We note that � by definition refers to fermions near the
hot spots, and is obtained by coupling to the entire spin
fluctuation spectrum.

Our value of g is consistent with fitting resistivity data
to spin fluctuation scattering [26] and with Eliashberg
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calculations of � and �res [19]. Such a large value of g is
also expected on microscopic grounds: in the Hubbard
model, the effective g is expected to be of the order of the
fermionic bandwidth W [27] which is 1 eV for the cup-
rates. Our estimate �� 2 is consistent with the velocity
renormalization estimated from normal state ARPES ex-
periments [28]. Moreover, the specific heat: C �  T with
experimental  ’ 2 mJ

g�atK2 (Ref. [29]) yields in a two-layer
system N0 �

2:8
1�� eV�1 � 1 eV�1, where N0 is the (bare)

density of states per spin. Again, this N0 is close to our
value N0 � 1=��vF� � 1 eV�1 (using the previously
mentioned number for vF).

The result that � > 1 might question the validity of
Eqs. (2) and (3). In general, a Migdal theorem does not
exist for spin fluctuations, since spin fluctuations are
made out of fermions, and hence the bosonic energy scale
is comparable to the (renormalized) Fermi energy for
general q. Our theory, though, is based on an expansion
of fermionic degrees of freedom about the hot spots, and
bosonic degress of freedom about Q. That is, high energy
excitation processes have been integrated out, and are
absorbed into the definition of �Q. This means that in
the context of our theory, only low energy vertex correc-
tions are relevant, and they are unimportant for the same
reason as in the electron-phonon problem, that is spin
fluctuations are slow compared to fermions [23]. For
this reason, an ‘‘effective’’ Migdal theorem exists, and
justifies Eqs. (2) and (3).

We next discuss the spectral weight of the resonance,
and how this affects the fermionic self-energy in the
superconducting state. We begin by noting that since the
resonance peak is strong at Q, if it were present for all
momenta, the total integrated intensity would be O�1�.
However, the peak exists only in a momentum range
between Q and Qmin, where Qmin is the momentum con-
necting the nodal points at the Fermi surface. This occurs
since the particle-hole continuum extends to zero fre-
quency at Qmin, and the resonance ceases to exist there.
As q approaches Qmin, both the energy and the intensity of
the resonance peak vanish (that is, the incommensurate
side branches). This behavior is consistent with the ob-
served ‘‘negative’’ curvature of the resonance dispersion
and the progressive reduction of the peak intensity as q
deviates from Q [30]. The ARPES measurements of the
Fermi surface all show that near optimal doping,
Q–Qmin 	 0:2��;��, i.e., the resonance peak exists in a
momentum range which constitutes only 6% of the area
of the Brillouin zone. This smallness of the momentum
range gives rise to the smallness of I0.

The real issue, though, is whether a small I0 implies a
small fermionic self-energy. We argue that it does not. As
just stated, the resonance peak is strong, but exists only in
a limited momentum range, which is why I0 is small.
Whether or not the small momentum integrated intensity
of the peak matters then depends on whether or not
typical bosonic momenta that contribute to the fermionic
�(k,!) are within the allowed q range of the peak. If they
177002-2
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are not, then the smallness of I0 matters. If they are, then
it does not. These typical q can be easily estimated from
an analysis of the fermionic self-energy (��

R
G0�) dis-

cussed above, and for ! 
 100 meV at which the reso-
nance mode affects the self-energy, are well within the
range between Q and Qmin for fermions near the hot
spots: jQ� qj �!=vF 	 0:08��

���
2

p
�0:2��. Thus, al-

though the resonance peak occupies only a small portion
of the Brillouin zone, it is actually broader than the
typical momentum scale for fermions. In this situation,
in the calculations of the fermionic self-energy, one can
approximate S�q;�� by its large value in the near vicinity
of Q, and neglect the dispersion of the peak. This in turn
implies that the small I0 does not matter for the self-
energy. We note again in this regard that experimentally
[24]

R
d�S�Q;�� � 1:6 is indeed not small.

We next discuss the relation between the resonance
peak and the condensation energy. The issue is whether
the resonance peak contribution to the condensation en-
ergy is consistent with experiment. This issue is somewhat
nontrivial as the internal energy is the sum of the kinetic
and the potential energies. The exchange part of the
potential energy is related to the difference between the
integrated S�q;�� in the normal and the superconduct-
ing states [31]: Ep � �3J=16�3�

P
i

R
d2qd��S�i�n �q;�� �

S�i�sc �q;����cosqx � cosqy� (the summation over i � o; e
goes over odd and even channels in two-layer systems).
If we assume that S�e� and S�o�n are negligible, and ap-
proximate S�o�sc �q;�� by S�o�sc �q;�� � ��Q�res*���
�res� for jQ� qj< jQ�Qminj, and S�o�sc �q;�� � 0 else-
where, we find Ep � 3J�2��Q�res��jQ�Qminj=4��2 	
0:05J. Similar values are found from explicit calculations
using the random phase approximation [32]. This energy
savings is already a small number. The actual value of the
potential energy is, however, even smaller due to com-
pensation from Sn and other nonexchange terms in the
Hamiltonian. Eliashberg-type computations of the poten-
tial energy including the normal Sn part but without
taking into account the restriction on q found [33] Ep �
0:008J � 10 K. The restriction on q further reduces this
energy. The condensation energy Ec extracted from the
specific heat measurements is Ec � 10 K. This condensa-
tion energy is about Ep. In reality, Ec should be greater
than Ep since at strong coupling, the kinetic energy
decreases in the superconducting state as the fermionic
excitations become less diffusive in the superconducting
state due to feedback effects again associated with the
resonance [34]. In any event, we clearly see that the
resonance viewed as a spin exciton for which the intensity
at Q is not small yields a small value of Ec, in agreement
with the data.

It is also essential to point out an important difference
between the coupling of fermions to the resonance mode
in a d-wave superconductor and the coupling of fermions
to antiferromagnetic magnons. In the latter case, the spin
mode couples to fermions only through gradients, i.e., the
renormalized coupling geff is much smaller than g. This
177002-3
reduction from g to geff is the result of strong vertex
corrections if antiferromagnetic magnons are present in
the normal state [35], and occurs because antiferromag-
netic magnons are compatible only with a small Fermi
surface (hole pockets), in which case g has been absorbed
into the definition of renormalized fermions with an
SDW energy gap [36]. However, we are treating the met-
allic phase near optimal doping where a large Fermi
surface exists, the normal state spin dynamics is purely
relaxational, and the resonance peak appears only when
fermions acquire a d-wave superconducting gap. Thus, g
is the appropriate coupling to use, not geff . The crossover
between these two regimes should occur in the low doping
regime where the Fermi surface evolves towards small
hole pockets. (Note in passing that for these reasons, the
resonance mode is not the ‘‘glue’’ for the magnetically
mediated pairing theory near optimal doping — this pair-
ing is produced by overdamped spin excitations.)

The above picture of the spin resonance and its effect
on fermions has been challenged by a number of authors.
Perhaps the work which best summarizes these objections
is that of Ref. [37]. They argued that g� 14 meV and ��
10�3, 2 and 3 orders of magnitude smaller than our
values, respectively. The large difference in g is the
combination of several factors. First, the value of � that
we extracted from the data is about 8 times larger than
theirs. This is because they equated Eq. (2) with the half-
width of the resonance, without taking into account the
fact that the resonance width is strongly reduced com-
pared to the normal state because of gapping of the
particle-hole continuum. Moreover, from Eq. (2), we
see that the full width of the normal state (relaxational)
� is not 2�, but rather 2

���
3

p
�max where ���max� � ��1

Q .
Second, they assumed �max was the resonance mode
energy (40 meV), whereas we used the normal state
maximum (20 meV). Third, they assumed an N0 � J�1 �
10 eV�1, i.e., their vF is about 12.5 times smaller than
ours. The combination of these three factors accounts for
the factor of 50 difference in g. The even larger discrep-
ancy in � is due to their coupling only to the resonance
(which they treat as an Einstein mode), and not to the
entire spin fluctuation spectrum as we have done.

Moreover, they approximated the resonance peak as a
product of two * functions: S�q;�� � �2��3I0*�q�
Q�*����res� � ::: where dots stand for the nonreso-
nance part. Using this approximation, the estimated fer-
mionic self-energy due to spin-fermion scattering scales
as I0�g=�res�

2. By their estimates, g� 0:35�res, I0 � 1,
and hence the effect on the fermionic self-energy is
negligible. As demonstrated above, our estimate for g: g�
0:7eV� 17�res is very different from theirs. This is the
primary reason we get a large self-energy, and they get a
small one. We emphasize, however, that the approxima-
tion that S�q;�� is a * function in momentum space leads
to a qualitatively incorrect fermionic self-energy, in that,
as stated earlier, the typical fermionic momentum scale is
actually smaller than the resonance width. Furthermore,
177002-3
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in such an approximation, the imaginary part of the self-
energy is simply a * function in energy, since only one
bosonic momentum contributes. This is clearly not con-
sistent with experiment. The aspect which is completely
missed by using the * function approximation in q is that
as soon as the resonance has a finite width in momentum
space, the internal momentum sum in the Feynman dia-
gram for the self-energy is dominated by the flat fer-
mionic dispersion in the vicinity of the ��; 0� points [13].
This is why the self-energy effects are so large for mo-
menta near ��; 0�, and also why the energy scale at which
structure appears in the spectral function (spectral dips
and kink energies) is independent of momentum [12].

To summarize, we demonstrated in this paper that the
large intensity of the resonance at Q � ��;�� is consis-
tent with the small value of the total momentum and
frequency integrated intensity of the resonance peak,
and with the fact that the magnetic part of the condensa-
tion energy is only a small fraction of J. We found that the
spin-fermion coupling g is of the order of 1 eV and
argued that this value of g is consistent with experiment.
This g is sufficiently large that scattering from the reso-
nance can substantially affect the electronic properties of
the cuprates below Tc.
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