499 research outputs found

    New Dirac points and multiple Landau level crossings in biased trilayer graphene

    Full text link
    Recently a new high-mobility Dirac material, trilayer graphene, was realized experimentally. The band structure of ABA-stacked trilayer graphene consists of a monolayer-like and a bilayer-like pairs of bands. Here we study electronic properties of ABA-stacked trilayer graphene biased by a perpendicular electric field. We find that the combination of the bias and trigonal warping gives rise to a set of new Dirac points: in each valley, seven species of Dirac fermions with small masses of order of a few meV emerge. The positions and masses of the emergent Dirac fermions are tunable by bias, and one group of Dirac fermions becomes massless at a certain bias value. Therefore, in contrast to bilayer graphene, the conductivity at the neutrality point is expected to show non-monotonic behavior, becoming of the order of a few e^2/h when some Dirac masses vanish. Further, we analyze the evolution of Landau level spectrum as a function of bias. Emergence of new Dirac points in the band structure translates into new three-fold-degenerate groups of Landau levels. This leads to an anomalous quantum Hall effect, in which some quantum Hall steps have a height of 3e^2/h. At an intermediate bias, the degeneracies of all Landau levels get lifted, and in this regime all quantum Hall plateaus are spaced by e^2/h. Finally, we show that the pattern of Landau level crossings is very sensitive to certain band structure parameters, and can therefore provide a useful tool for determining their precise values.Comment: 11 pages, 6 figures; v2: expanded introduction, new references added, a few typos correcte

    Magnetic order and paramagnetic phases in the quantum J1-J2-J3 honeycomb model

    Full text link
    Recent work shows that a quantum spin liquid can arise in realistic fermionic models on a honeycomb lattice. We study the quantum spin-1/2 Heisenberg honeycomb model, considering couplings J1, J2, and J3 up to third nearest neighbors. We use an unbiased pseudofermion functional renormalization group method to compute the magnetic susceptibility and determine the ordered and disordered states of the model. Aside from antiferromagnetic, collinear, and spiral order domains, we find a large paramagnetic region at intermediate J2 coupling. For larger J2 within this domain, we find a strong tendency to staggered dimer ordering, while the remaining paramagnetic regime for low J2 shows only weak plaquet and staggered dimer response. We suggest this regime to be a promising region to look for quantum spin liquid states when charge fluctuations would be included.Comment: 4 pages, 3 figure

    Charge and Spin Transport at the Quantum Hall Edge of Graphene

    Full text link
    Landau level bending near the edge of graphene, described using 2d Dirac equation, provides a microscopic framework for understanding the quantum Hall Effect (QHE) in this material. We review properties of the QHE edge states in graphene, with emphasis on the novel phenomena that arise due to Dirac character of electronic states. A method of mapping out the dispersion of the edge states using scanning tunneling probes is proposed. The Zeeman splitting of Landau levels is shown to create a particularly interesting situation around the Dirac point, where it gives rise to counter-circulating modes with opposite spin. These chiral spin modes lead to a rich variety of spin transport phenomena, including spin Hall effect, spin filtering and injection, and electric detection of spin current. The estimated Zeeman spin gap, enhanced by exchange, of a few hundred Kelvin, makes graphene an attractive system for spintronics. Comparison to recent transport measurements near nu=0 is presented.Comment: 10 pages, 6 figures, invited pape

    Exponentially slow heating in periodically driven many-body systems

    Full text link
    We derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that for systems with local interactions, energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes. We discuss applications to other problems, including decay of highly energetic excitations in cold atomic and solid-state systems.Comment: v1 to v2: several typos corrected. 5 page
    corecore