18 research outputs found

    The Lyth Bound and the End of Inflation

    Full text link
    We derive an extended version of the well-known Lyth Bound on the total variation of the inflaton field, incorporating higher order corrections in slow roll. We connect the field variation Ī”Ļ•\Delta\phi to both the spectral index of scalar perturbations and the amplitude of tensor modes. We then investigate the implications of this bound for ``small field'' potentials, where the field rolls off a local maximum of the potential. The total field variation during inflation is {\em generically} of order mPlm_{\rm Pl}, even for potentials with a suppressed tensor/scalar ratio. Much of the total field excursion arises in the last e-fold of inflation and in single field models this problem can only be avoided via fine-tuning or the imposition of a symmetry. Finally, we discuss the implications of this result for inflationary model building in string theory and supergravity.Comment: 10 pages, RevTeX, 2 figures (V3: version accepted for publication by JCAP

    Cosmology From Random Multifield Potentials

    Full text link
    We consider the statistical properties of vacua and inflationary trajectories associated with a random multifield potential. Our underlying motivation is the string landscape, but our calculations apply to general potentials. Using random matrix theory, we analyze the Hessian matrices associated with the extrema of this potential. These potentials generically have a vast number of extrema. If the cross-couplings (off-diagonal terms) are of the same order as the self-couplings (diagonal terms) we show that essentially all extrema are saddles, and the number of minima is effectively zero. Avoiding this requires the same separation of scales needed to ensure that Newton's constant is stable against radiative corrections in a string landscape. Using the central limit theorem we find that even if the number of extrema is enormous, the typical distance between extrema is still substantial -- with challenging implications for inflationary models that depend on the existence of a complicated path inside the landscape.Comment: revtex, 3 figures, 10 pages v2 refs adde

    Multi-field Inflation with a Random Potential

    Full text link
    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian motion with a drift in the D-dimensional field space. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, leads to rich phenomenologies, such as primordial fluctuations in the power spectrum on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and can be detected or falsified with more data coming in the future. The tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, but can possibly be enhanced by resonant effects or arise from the entropic perturbations during the onset of (p)reheating. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.Comment: More clarifications and references adde

    Multi-field Inflation with a Random Potential

    Full text link
    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian motion with a drift in the D-dimensional field space. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, leads to rich phenomenologies, such as primordial fluctuations in the power spectrum on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and can be detected or falsified with more data coming in the future. The tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, but can possibly be enhanced by resonant effects or arise from the entropic perturbations during the onset of (p)reheating. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.Comment: More clarifications and references adde

    Accidental Inflation in the Landscape

    Full text link
    We study some aspects of fine tuning in inflationary scenarios within string theory flux compactifications and, in particular, in models of accidental inflation. We investigate the possibility that the apparent fine-tuning of the low energy parameters of the theory needed to have inflation can be generically obtained by scanning the values of the fluxes over the landscape. Furthermore, we find that the existence of a landscape of eternal inflation in this model provides us with a natural theory of initial conditions for the inflationary period in our vacuum. We demonstrate how these two effects work in a small corner of the landscape associated with the complex structure of the Calabi-Yau manifold P^4_[1,1,1,6,9] by numerically investigating the flux vacua of a reduced moduli space. This allows us to obtain the distribution of observable parameters for inflation in this mini-landscape directly from the fluxes.Comment: 40 pages, 11 figure

    A Global View on The Search for de-Sitter Vacua in (type IIA) String Theory

    Get PDF
    The search for classically stable Type IIA de-Sitter vacua typically starts with an ansatz that gives Anti-de-Sitter supersymmetric vacua and then raises the cosmological constant by modifying the compactification. As one raises the cosmological constant, the couplings typically destabilize the classically stable vacuum, so the probability that this approach will lead to a classically stable de-Sitter vacuum is Gaussianly suppressed. This suggests that classically stable de-Sitter vacua in string theory (at least in the Type IIA region), especially those with relatively high cosmological constants, are very rare. The probability that a typical de-Sitter extremum is classically stable (i.e., tachyon-free) is argued to be Gaussianly suppressed as a function of the number of moduli.Comment: 23 pages, 5 figures; v2, v3: arguments improved, references added; v4: version to appear in JHE
    corecore