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1 Introduction

Recent cosmological data strongly suggests that our universe is sitting at a vacuum state

with a very small positive vacuum energy density, or cosmological constant. Further cos-

mological data also suggests that our universe went through an inflationary epoch in its

very early stage. This epoch follows from the presence of a vacuum energy density much

bigger than today’s value. So it is very likely that our universe started with a relatively

large vacuum energy density during the inflationary epoch; it subsequently moved down a

“potential landscape” and landed at the present small value before nucleosynthesis time.

A question of great interest is whether this picture is compatible with our present under-

standing of string theory. In particular, we would like to examine whether the stringy

cosmic landscape has features that may suggest the above cosmological scenario.

Although recent studies of flux compactification in string theory suggest that there are

numerous solutions to the string/supergravity equations of motion with different vacuum

energies [1–3], we believe that most of them are only extrema of the resulting effective

potential. In fact, explicit model building shows that a meta-stable (i.e., classically stable

but may have a finite decay time due to quantum tunneling) de Sitter (dS) vacuum is hard

to come by. In particular, the search of a single dS minimum (i.e., with only semi-positive

scalar field mass-squares) in Type IIA models has so far come up empty. This is somewhat

discouraging as the search includes a collection of exponentially many extrema (by varying

the fluxes) in Type IIA vacua. On the other hand, this result is really not that surprising

from the properties of multidimensional potentials [4, 5].

– 1 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
6

Consider a flux compactification with N moduli. An extremum will be (meta-)stable

if all the scalar mass-squares are semi-positive. The axionic component of each modulus

presumably has an oscillating behavior, so it will hit a minimum half the time. If we hit

a maximum, we expect a nearby minimum to which the wavefunction of the universe can

easily move. To simplify the discussion, we may assume that it is easy to reach an axionic

minimum and we focus mostly only on the real moduli. Now (with canonical kinetic terms),

a typical stringy effective potential V (φj) (j = 1, 2, · · · , N) of N (real) moduli have non-

trivial behavior. Since none (or almost none) of the moduli takes a constant value, they

are expected to have some extrema too. For a complicated potential V (φj) sitting at a

minimum, the Hessian (i.e., the N ×N mass-squared (symmetric) matrix, or simply mass

matrix) must have only semi-positive eigenvalues. However, this likelihood is very small,

as first pointed out by [4]. Let P be the probability that a given de Sitter solution (an

extremum of a positive V (φj)) turns out to be a meta-stable dS minimum (that is, the dS

vacuum is tachyon-free). To avoid de-compactification, we consider only the meta-stable

vacua within the finite ranges of the moduli. Suppose all the real entries in the Hessian is

random, then the probability P that it has only positive eigenvalues is roughly given by

P ∼ e−
ln 3
4

(N+0.7)2 (1.1)

where ln(3)/4 = 0.275 is obtained in [6, 7]. For a relatively large N , P is Gaussian-

suppressed. Even if the moduli do not couple to each other so the Hessian is diagonal, the

probability P for large N is still exponentially suppressed,

P ∼
(

1

2

)N
= e−N ln 2 (1.2)

where ln 2 = 0.693. These probabilities apply to searches via trial and errors only.

One may argue that a generic potential V (φj) must hit some minima somewhere. This

is certainly true. In the Type IIA cases, we see that all known (meta-stable) minima

happen to have zero (Minkowski) or negative (Anti-de Sitter) vacuum energy densities,

where supersymmetry as well as other symmetries help to guide the search for minima.

In fact, some searches start from an AdS minimum with only positive mass squares and

then lift it to de Sitter space. However, upon lifting to de Sitter space, tachyon generically

appears. The couplings among the moduli introduces off-diagonal terms in the Hessian.

As the cosmological constant increases, the magnitudes of the off-diagonal terms increase

as well, and that tend to cause instability.

To see the impact on the stability of the vacuum due to the increase of the vacuum

energy, let us start with the diagonal positive mass-square matrix A for an AdS vacuum.

Given the masses, we can determine the variance σA of A. As we lift the cosmological

constant, the Hessian at the extremum becomes A + B where B may be treated as a

random matrix for a complicated generic V (φj). The matrix B has variance σB. This

allows us to define the size of the average magnitude of the off-diagonal terms relative to

the diagonal mass-squared terms in terms of y = σB/σA. The parameter y essentially

describes how the uplifting potential impact on the stability of the vacuum. Now let

P = a e−bN
2−cN (1.3)
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where the Gaussian suppression dominates the exponential suppression when bN/c > 1.

Numerically we find that, for small y,

b = 0.000395y + 1.05y2 − 2.39y3,

b

c
= 0.0120 + 2.99y − 12.2y2 + 1650y3.

(1.4)

Here we see that Gaussian suppression becomes dominant when y ≥ 0.0241 for N = 10

(where b/c ≥ 0.1 and Nb/c ≥ 1) and y ≥ 0.00269 for N = 50. For fixed N , Gaussian

suppression becomes more dominant as y increases.

As an example, we look at a concrete search for a dS vacuum starting from an AdS

vacuum undertaken in [8]. In this SU(2) × SU(2) model, there are 14 moduli (7 complex

moduli), i.e., N = 14. At the extremum with positive vacuum energy, y ' 0.274, so

bN/c� 1. This indicates that such a search has a Gaussianly small probability of success.

Sure enough, tachyon appears at this extremum.

On the other hand, some generic argument suggests that dS vacua exist in Type IIB

models, especially when non-perturbative effects are turned on. For example, a KKLT

vacuum may be obtained by uplifting an AdS minimum with non-perturbative effects.

Attempts to construct dS vacua in Type IIA models studied so far do not include non-

perturbative effects. This is because the no-scale structure is present at tree level in Type

IIB, while not in Type IIA. The no-scale structure may help to have a hierarchical structure

in Type IIB with sub-leading corrections. We shall discuss Type IIB models in a separate

paper. Even without going into the details here, we shall use the simple belief that there

are metastable dS vacua present in string theory, even though they may be very rare.

Suppose all potentials of dS vacua may be treated as “uplifts” of AdS vacua with semi-

positive mass-squares. A small uplifting will introduce relatively small off-diagonal terms

into the Hessian so the chance of being a dS minimum is relatively good. As we increase the

uplifting to higher vacuum energy densities, the off-diagonal terms in the Hessian increase

accordingly and the Hessian becomes complicated. The off-diagonal terms tend to push the

lowest eigenvalues to negative values. So the chance of this being a dS minimum becomes

Gaussianly small (i.e., (1.1)) as we go to higher cosmological constants. This leads to the

conjecture that there are essentially no dS minima in the relatively higher CC regions in

the Type IIA cosmic landscape. The message leads to the following proposal:

Raising the cosmological constant destabilizes the classically stable vacua.

This suggests that, as the universe evolves down the potential, it encounters no dS min-

ima along its way for relatively large cosmological constant (CC) values. Presumably, this

happened during the inflationary epoch. Towards the end of inflation, when the universe

reaches regions with sufficiently small CC, there may be some dS minima around for the uni-

verse to be trapped in one of them. That is, the percolation probability is of order unity for

high CC, but decreases substantially by the time the universe reaches the small CC region.

It is very likely that there are many more AdS vacua than dS minima around, but

since the universe starts from a relatively high CC region (to generate enough inflation),

it has to go through the small positive CC region before reaching the negative CC region.
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It is not unreasonable that it becomes trapped in a low dS minimum on its way towards

negative CC region if the probability of finding a dS minimum with a small CC is not

too suppressed. As we shall see, it is reasonable to expect that, for the small positive

CC region, some of the moduli with large masses essentially decouple, thus reducing N

to a smaller effective value, so the probability of finding a low dS minimum may not be

exponentially suppressed compared to the number of AdS vacua nearby.

Since no classically stable Type IIA dS vacuum has been found so far, the above

proposal cannot be (non-trivially) checked at the moment. However, we do know some

Type IIB solutions; so presumably such a check can be performed for Type IIB regions of

the landscape. This study (which involves some subtleties) is under way.

This paper is organized as follows. In section 2, we review and discuss the properties

of a real symmetric random matrix as a typical example of a Hessian. We then discuss a

Hessian that is the sum of a random diagonal positive matrix plus a random symmetric

matrix. This mimics the Hessian that generically appears in the search for a dS minimum

in Type IIA models. In section 3, we consider a few examples to illustrate the main point

of this paper. Section 4 contains some discussions. In particular, we shall comment on an

earlier estimate of the probability of obtaining dS vacua in [9]. Some details are relegated

to the appendix.

2 Probability estimation in random matrix

We now discuss the probability P of a complete random mass matrix to have only positive

eigenvalues, and then contrast the results with that for a mass matrix where the off-diagonal

components between Kähler and complex or dilaton moduli are suppressed. Note that the

probability being considered is the probability that an extremum with positive vacuum

energy density turns out to be a dS minimum.

2.1 A complete random matrix

When we cannot neglect off-diagonal components of a mass matrix, we expect tachyon

directions to develop since the off-diagonal components repel the eigenvalues through di-

agonalization. Before studying more realistic examples and computing the mass matrix

from concrete models, we first review how unlikely one can obtain minima in a complete

random matrix [4, 6, 7].

We are interested in counting the probability for a real-symmetric random matrix to be

positive definite. We assume that each diagonal component obeys the normal distribution

with central value 0 and variance 1, while off-diagonal components have variance 1/
√

2

(Gaussian Orthogonal Ensemble with variance 1). We increase the size of the matrix and

numerically count the probability of the positive definitive matrices as a function of the

dimension of the matrix, N . The number N represents the number of moduli in the

realistic landscape. Using the fitting function P = ae−bN
2−cN , our simulation shows that,

for N ≤ 7,

P ≡ # of events

# of trials
∼ 0.938 e−0.277N2−0.382N . (2.1)

See figure 1.
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a ã

-b N2-c N

Figure 1. The probabilities of positive definite real symmetric random matrices. Each diagonal

entry is independently assigned a real number obeying the normal distribution with central value

zero and variance one, while off-diagonal entries has variance 1/
√

2, i.e., we assume a Gaussian

orthogonal ensemble. The fitting function is ae−bN2−cN where a ∼ 0.938, b ∼ 0.277, c ∼ 0.382.

This fit reproduces well the theoretical prediction in [6] where b = ln(3)/4 ∼ 0.275 (for

Gaussian orthogonal ensemble), although the prediction is applicable at large N . In [6],

an eigenvalue fluctuation around the edge of Wigner semi-circle for finite N (referred as

Tracy-Widom [10]) was taken into account, such that the density function of eigenvalues

was corrected accordingly. The analytic expression was applicable under the assumption of

largeN , i.e., for leading behavior proportional toN2. However this is still a good estimation

for small N if we incorporate the linear dependence in the exponent as a correction for

small N . Interestingly, the complete form of analytical expression was achieved recently

in [11].1 For GOE, the probability function is given by

P = exp

[
− ln 3

4
N2 +

ln(2
√

3− 3)

2
N − 1

24
lnN − 0.0172

]
∼ 0.983 e−0.275N2−0.384N−0.0417 lnN .

(2.2)

Therefore our numerical simulation mostly agrees with the analytical expression, not only

for the coefficient of leading N2 term, but also for the linear dependence and constant term,

although we neglected lnN dependence which is actually small even between N = 2–7. For

simplicity, if we fit a form P = e−
ln 3
4

(N+d)2 , then the choice of d ' 0.7 provides a good fit

for P for all N > 1.

2.2 A random matrix with suppressed off-diagonal components

As we start from an AdS vacuum with only positive mass-squared eigenvalues and raise

the vacuum energy in the search for a dS vacuum, couplings among the moduli introduces

terms into the Hessian, in particular off-diagonal terms. We like to estimate P as a function

of the relative size of the off-diagonal terms emerging in the Hessian. In particular, we

like to see when P, as a function of N , is Gaussianly suppressed versus exponentially

suppressed. This leads us to consider a mass-squared matrix in which the magnitudes

1We would like to thank David Marsh and Timm Wrase for bringing our attention to the paper.
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of diagonal components is larger than that of the off-diagonal components. We again

introduce randomness to mimic some of the features in the Hessian generically.

We consider the following mass-squared matrix:

M = A+B (2.3)

where the matrix A only has real diagonal components which obey half-normal distribution

(positive definite) with variance σA, while each component of a real-symmetric matrix B

obeys Gaussian orthogonal ensemble with variance 1, same as before. We use the half-

normal distribution to model the statistical distribution of the diagonal elements at leading

order. The difference between σA and σB = 1 introduces the hierarchy between the diagonal

elements and off-diagonal elements.

The basic idea for this modeling is the following: first we consider moduli stabilization

at AdS minima by some mechanism, and then add an uplifting potential(s) to attain a

positive cosmological constant. The diagonal mass matrix A is given at AdS and the

real-symmetric mass matrix B comes from the uplifting term since the stabilized moduli

masses are generically mixed in the presence of additional sources. In the previous section,

we consider situations in which the mixing term is comparable to the diagonal terms in

the potential. Here, we consider scenarios where the mixing is suppressed, such that the

diagonal entries are more likely to be positive.

We simulate the probabilities of positive definite mass matrix for N = 4–20 while

varying the variance of diagonal matrix between σA = 10, 15, 20, · · · , 100. We choose the

fitting function to be still of the form

P = a e−bN
2−cN , (2.4)

but now the b and c are both functions of σA. The motivation for this choice is as follows.

For random matrices that we studied in the previous subsection, the Wigner semicircle

law implies that the eigenvalues are mostly distributed within [−2
√
N, 2
√
N ]. Now we

have added some additional positive diagonal elements. If we fix the hierarchy between the

diagonal and off-diagonal terms, but increase the dimension N , the above range will keep

increasing and eventually swamp the fixed hierarchy we introduced. Namely we expect to

recover the Gaussian suppression in the large N limit. This is why we choose the leading

term in the exponential to be still proportional to N2. For smaller N , we expect it to be

less Gaussian, and this is modeled by the linear term.

For example, for σA = 10, we get

P = 0.950 e−0.00810N2−0.00442N ; (2.5)

for σA = 100, we get

P = 1.00 e−0.000111N2−0.00277N . (2.6)

The coefficients b and c as functions of σA (or equivalently y ≡ σB/σA) can be fitted by

the following formulae, (see figure 2),

b = 0.000395y + 1.05y2 − 2.39y3,

b

c
= 0.0120 + 2.99y − 12.2y2 + 1650y3.

(2.7)
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0.02 0.04 0.06 0.08 0.10
y

0.001

0.01

0.1

1

b

0.02 0.04 0.06 0.08 0.10
y

0.10

1.00

0.50

0.20

0.30

0.15

1.50

0.70

b�c

Figure 2. The probability estimation for variances σA = 10–100 in the positive definite diagonal

matrix A with N = 4–20. The variance of real-symmetric matrix B is fixed at σB = 1. We use the

probability fitting function of the form P = a e−bN2−cN as before, while each coefficient depends

on the relative ratio of variances y = σB/σA. We found that a, b, c can be fitted by (2.7) and a is

mostly one between σA = 10–100.

The extrapolation of these fitting functions to larger values of N works quite well. For

example, for N = 30, y = 1/10, the expected probability from (2.5) is Pexp = 0.00056,

while the numerical simulation suggests Pobs ≈ 0.00048; for N = 150, y = 1/100, the

expected probability is Pexp = 0.0548, while the observed probability is Pobs = 0.0318. In

the large N limit with fixed y, we still have the same form (2.4) but we expect the formulae

for the coefficients b and c (2.7) to deform and approach the limit of the complete random

matrix. These fitting values may also be applicable even if we decrease y value further. At

y = 1/200 and N = 300 which is outside of the data used for the fitting (2.7), the expected

probability goes as Pexp = 0.0600. On the other hand, the observed probability is given by

Pobs = 0.0202, therefore not so bad.

We conclude that the probability decreases immediately once the off-diagonal compo-

nents become non-negligible. From the data in figure 2, the ratio of coefficients is reaching

to b/c = 0.1 at y = 0.0241. This is the point when the N2 term is comparable to the linear

term at N = 10. Therefore we are very likely to encounter a tachyon when off-diagonal

components are not suppressed with y ≤ 0.0241. If a model of interest has a lot more

moduli, for instance N = 50, then the Gaussian suppression in the probability is expected

unless the off-diagonal suppression becomes less than y = 0.00269. On the other hand,

when the coefficient b is comparable to the value of c, the probability is mostly Gaussianly

suppressed even at lower N .

Another possible fitting function for the probability P is given in appendix A, which

however does not have the expected large N behavior and thus work not well when extrap-

olating to large N .

In the next section, we consider some concrete models in IIA. In these models, the

mass matrix at the extrema is well mimicked by a random matrix analysis.

3 Search of Type IIA de Sitter vacua

There have been substantial efforts in constructing de Sitter vacua from Type IIA string

theory. The simplicity of Type IIA flux vacua makes them more amendable to detailed,
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quantitative analysis. In contrast to Type IIB compactifications on warped Calabi-Yau

spaces, classical effects (i.e., from fluxes) alone can stabilize both the complex structure

and Kahler moduli in Type IIA string theory. Motivated by the infinite family of AdS

Type IIA flux vacua found in [12], attempts to construct de Sitter flux vacua were made

in [8, 13–23]. We refer to such de Sitter vacua which do not invoke non-perturbative

effects as classical de Sitter vacua. The absence of non-perturbative effects and explicit

supersymmetry breaking localized sources2 makes it possible to construct and describe such

classical de Sitter vacua as 10D backgrounds, rather than candidate minima of an effective

4D potential. Moreover, the backreaction of fluxes on the background can be captured

by the framework of generalized complex geometry, allowing us to make use of the strong

mathematical results previously obtained on the subject.

The idea is to consider Type IIA string compactifications on internal spaces with

negative curvature. Various no-go theorems for de Sitter extrema have appeared in the

literature [35–37]. By revisiting the assumptions made, it was found that the minimal

ingredients needed to evade such no-goes are fluxes, orientifold planes, and a negatively

curved internal space [14, 16, 38]. Interestingly, these minimal ingredients can be realized in

compactificatons on generalized complex geometries. The metric fluxes which distinguishes

these generalized geometries from Calabi-Yau spaces also induce curvature in the internal

space. Many of these generalized geometries are negatively curved, at least in some region

of the moduli space. Though less familiar than Calabi-Yau spaces, generalized complex

geometries are more general supersymmetric backgrounds for string theory (e.g., orientifold

compactifications on SU(3) structure manifolds leads to an effective N = 1 SUGRA, just as

Calabi-Yau orientifolds3). Of particular interest are spontaneous supersymmetry breaking

states of such effective 4D supergravities as they are amendable to the powerful tools of

supersymmetry. Note also that the no-go theorems in [14, 16, 37, 38] concern only with

the existence of de Sitter critical points. It was shown in [41] that the stability of such

candidate de Sitter vacua provide further strong constraints on the choice of flux vacua.

While we emphasized above the importance of being able to lift a 4D de Sitter con-

struction to a full solution of the 10D equations of motion, we review the 4D description

of classical de Sitter solutions here as it greatly facilitates a comparison with our Type IIB

analysis presented in a forthcoming paper. 4D SUSY implies the existence of a globally

well-defined internal 6D spinor, though such spinor is not necessarily convariantly constant.

Thus, the real 2-form J and the complex 3-form Ω = ΩR + iΩI can be constructed from

such a spinor; they define an SU(3) structure (and not an SU(3) holonomy in general) and

are not necessarily closed:

dJ = −3

2
Im(W 1Ω) +W4 ∧ J +W3

dΩ = W1J ∧ J +W2 ∧ J +W 5 ∧ Ω
(3.1)

2There has been some recent progress in finding backreacted solutions of anti-3 branes [24–29] (see also

the discussion about anti-6 brane [30, 31]) and 10D lift of instanton effects [32–34].
3The effective potential was obtained for IIA Calabi-Yau orientifolds [39] and for non-Calabi-Yau orien-

tifolds [40].
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The torsion classes W1, . . . ,W5 correspond to the expansion of the derivatives of J and

Ω in terms of SU(3) representations: W1 is a complex scalar, W2 is a complex primitive

(1, 1) form, W3 is a real primitive (1, 2) + (2, 1) form, W4 is a real one-form, and W5 is a

complex (1, 0) form. An SU(3) structure (that is not also an SU(2) structure) manifold has

no nowhere-vanishing one-forms. If we restrict to such torsion classes, W4 and W5 must

vanish.

When the internal space is a non-Ricci flat SU(3) structure manifold, there are some

subtleties with the identification of the light fields and the associated low-energy effective

action [42, 43]. However, for group manifolds (and coset spaces) which we will focus on, we

can restrict to expansion forms that are left-invariant under the group action. This leads to

a 4D theory that is a consistent truncation [44], i.e., a solution to the 4D equations of motion

will also be a solution to the 10D equations of motion. Under the orientifold symmetry,

Ω→ −Ω∗, and J → −J . Hence, we can expand J and Ω in terms of a representative basis

of forms:

J = kiY
(2−)
i

Ω = FKY (3−)
K + iZKY (3+)

K

(3.2)

where Y
(2±)
i , i = 1, . . . , h

(1,1)
− is a set of two-forms even (odd) under the orientifold par-

ity, and Y
(3±)
K , K = 1, . . . , h(2,1) + 1 is a set of three forms which are even (odd) under

orientifolding. Note that FK are functions of the ZK and therefore not independent.

The effective 4D SUGRA resulting from reduction on an SU(3)-structure space is

completely specified by the superpotential W, the Kahler potential K, a set of gauge kinetic

functions fα,β, and their associated D-terms Dα.

K = −2 ln

(
− i
∫
e−2φΩ ∧ Ω∗

)
− ln

(
4

3

∫
J ∧ J ∧ J

)
= 4φ4 − ln(8vol6) ,

√
2W =

∫ (
Ωc ∧ (−iH + dJc) + eiJc ∧ F̂

)
fαβ = −κ̂iαβti,

Dα = − eφ4√
2vol6

r̂Kα FK ,

(3.3)

where φ4 is the 4D dilaton defined by e−φ4 = e−φ
√

vol6 with Ω ∧ Ω∗ = (4i/3)J ∧ J ∧ J =

8ivol6, and F̂ = F̂0 +F̂2 +F̂4 +F̂6 is the sum of the RR fluxes. The 2-form Jc and 3-form Ωc

that appear in the superpotential above are given by combinations with other supergravity

fields, namely, the dilaton φ, the Kalb-Ramond two-form B, and the RR three-form C3:

Jc = J − iB = tiY
(2−)
i

Ωc = e−φ Im(Ω) + iC3 = NKY
(3+)
K

(3.4)

The triple intersection numbers which enter into the gauge kinetic function are defined in

terms of the basis forms:

κijk =

∫
Y

(2−)
i ∧ Y (2−)

j ∧ Y (2−)
k , κ̂iαβ =

∫
Y

(2−)
i ∧ Y (2+)

α ∧ Y (2+)
β . (3.5)
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The D-terms contain information about the metric fluxes. The matrices riK and r̂Kα are

defined as follows:

dY
(2−)
i = riKY

(3−)K , dY (2+)
α = r̂α

KY
(3+)
K . (3.6)

On an SU(3) structure group/coset manifold (the type of SU(3) structure manifolds where

explicit examples have been constructed), there exist six global left-invariant one-forms ea,

a = 1, . . . , 6 and the metric fluxes fabc are introduced through dea = −1
2f

a
bce

b ∧ ec. The

matrices riK and r̂Kα are therefore linear functions of the metric fluxes.

The 4D scalar potential for the left-invariant modes then follows from the usual super-

gravity expression:

V = eK
(
KijDtiWDtjW +KKLDNKWDNLW − 3|W |2

)
+

1

2
(Ref)−1αβDαDβ (3.7)

where the derivatives DtiW = ∂tiW +W∂tiK (and analogously for DNK ).

Even though the 4D effective action of SU(3) structure compactifications may appear

to be more complicated in form than their Calabi-Yau counterpart, each individual term

in the action can be explicitly computed given the geometric and flux data. This is an

advantage over the more well studied Type IIB scenarios where non-perturbative instanton

corrections and the effects of SUSY breaking localized sources are often not computed in

explicit detail. In particular, useful results can be readily obtained by analyzing how

various contributions to the 4D potential scale with the moduli. Most of such analysis

was carried out for the universal moduli subspace as these moduli appear in any Type II

compactification. Consider the following metric ansatz in the 10D string frame:

ds2
10 = τ−2ds2

4 + ρds2
6 (3.8)

where we took the Weyl factor to be τ = e−φρ3/2 such that the kinetic terms for the

universal moduli ρ and τ in the 4D Einstein frame do not mix.

Various fluxes H3, Fq, localized q-brane sources and the 6D curvature contribute to

the 4D potential in some specific way:

VH3 = AH3τ
−2ρ−3, VFp = AFpτ

−4ρ3−p, Vq = Aqτ
−3ρ(q−6)/2, VR6 = AR6τ

−2ρ−1.

(3.9)

The coefficients AH3 and AFq of the flux potentials are defined to be positive, while the

coefficients Aq and AR6 can be either positive or negative. Note that all the potentials go

to zero when taking τ → ∞ while keeping the others finite. Therefore there are always

Minkowski vacua asymptotically. From these scalings, we can already derive some simple

no-go theorems for de Sitter vacua by finding a differential operator D ≡ −aτ∂τ−bρ∂ρ such

that DV ≥ cV for some non-trivial real constants a, b, and c > 0. However, upon closer

inspection, one finds, using the Sylvester’s criterion on the universal moduli subspace, that

the minimal ingredients which evade the no-goes only guarantee that de Sitter extrema are

allowed. Additional ingredients are needed to warrant stability. The diagnostic advocated

in [41] allows one to rule out a lot of models at the outset without going into the details of

the constructions.4

4The same method was applied for higher dimensional dS vacua [45].
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To extend the stability analysis of [41] to more moduli, we need to specify a model. For

reasons above (e.g., to ensure that the SU(3) structure reduction is a consistent truncation),

and in order to construct the SU(3) structure explicitly, the searches for de Sitter have

so far been limited to homogeneous spaces (e.g., group manifolds, and coset spaces). A

classification of SU(3) structure group manifolds was carried out in [23]. The number of

6D unipotent5 group spaces considered in [23] is of the order of 50. Quotienting such group

spaces by orbifolds which preserve N = 1 supersymmetry and which evade the no-goes for

de Sitter extrema puts additional constraints on the structure constants and only 5–10 of

the 6D nilpotent group spaces remain as viable candidates. Taking as a rough estimate

that each of these group spaces has O(10) left-invariant modes, and that tadpole conditions

require that the flux quanta supported on each cycle to be ≤ O(10), the sample space of

SU(3) structure being studied is of the order 1010. In reality, a much smaller number of

such solutions have been (and need to be) explicitly constructed as the constraints6 on the

torsion classes and fluxes which allow for new solutions other than the known SUSY AdS

solutions already rule out many candidate de Sitter solutions before flux quantization and

tadpole conditions are imposed.

Earlier studies (through explicit models, or general arguments using Sylvester’s crite-

rion on the universal moduli subspace) showed that tachyons are ubiquitous in classical

de Sitter solutions. The main reason is the relatively unsuppressed off-diagonal terms in

the moduli mass matrix. Small numbers can be generated with α′ and non-perturbative

corrections. In order for the classical SUGRA approximation to be valid, these corrections

have to be sufficiently small (i.e., large volume, weak coupling, etc.). If there exist symme-

tries that forbid the off-diagonal terms to appear at the classical level, they are naturally

suppressed (by the smallest of α′ and non-perturbative corrections). This so far has not

happened (at least for the subset of moduli we analyzed with the Sylvester’s criterion)

as off-diagonal elements are present already classically. (Though there may be classical

de Sitter solutions where the off-diagonal terms are absent at leading order. It would be

interesting to make this a requirement in the search).

3.1 Mass matrices in concrete models

We focus on some concrete models to compare with our random matrix analysis in detail.

3.1.1 SU(2)× SU(2) group manifold on orientifold

In this subsection, we focus on an SU(2) × SU(2) group manifold described in [8]. This

model evades the no-go theorem for extrema (see e.g. [37, 38]) and thus was considered a

candidate for metastable dS vacua. However only tachyonic solutions were found in the

search for dS extrema performed in [8]. Now we will analyze the mass matrix of this

5A Lie algebra is unipotent if the structure constants are traceless, i.e., faab = 0. Unipotence is a necessary

condition for the group G to admit a freely-acting discrete subgroup L, such that G/L is compact.
6Motivated by the form of some known SUSY AdS solutions, a universal ansatz was taken to facilitate

the search for de Sitter solutions. The constraint equations imply relations between contributions to the

equations of motion and allow for new solutions other than the SUSY ones.
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model at an extremal point, and see how it depends on the ratio of variances between the

off-diagonal entries and the diagonal ones.

Defining two-forms Y
(2−)
i and three-forms Y (3−)I on orientifolds of SU(3)-structure

manifolds, where i = 1, 2, 3 while I = 1, 2, 3, 4. Owing to the SU(2) × SU(2) symmetry

of the manifold, which is our focus here, the two-forms and the three-forms satisfy the

relation:

dY
(2−)
i = riIY

(3−)I , r =

 1 1 1 −1

1 −1 −1 −1

1 −1 1 1

 . (3.10)

The background fluxes are given by

F0 = m, F2 = miY
(2−)
i , F4 = 0 , F6 = 0 ,

H = p
(
Y

(3−)
1 + Y

(3−)
2 − Y (3−)

3 + Y
(3−)

4

)
.

(3.11)

Using these inputs, the Kähler potential and superpotential become

K = − ln
3∏
i=1

(ti + t̄i)− ln
4∏
I=1

(N I + N̄ I) + 3 ln

(
κ2

10

Vs

)
+ ln 32 ,

W =
Vs

4κ2
10

[
m1t2t3 +m2t1t3 +m3t1t2 − imt1t2t3 − ip(N1 +N2 −N3 +N4) + riIt

iN I
]
,

(3.12)

where Vs =
∫
M Y

(2−)
1 ∧ Y (2−)

2 ∧ Y (2−)
3 . The potential can be calculated by

V = eK
(
KAB̄DAWDB̄W̄ − 3|W 2|

)
(3.13)

without the D-terms.

In this 14 moduli system which consists of ti = ki − ibi and N I = uI + icI , a positive

extremum was found by [8]

m1 = m2 = m3 = L , m = 2L−1, p = 3L2,

k1 = k2 = k3 ∼ 0.8974L2, b1 = b2 = b3 ∼ −0.8167L2,

u1 ∼ 2.496L3, u2 = −u3 = u4 ∼ −0.5667L3,

c1 ∼ −2.574L3, c2 = −c3 = c4 ∼ 0.3935L3,

(3.14)

where L is a parameter assigned for the solution. The solution contains one tachyonic

direction which shows up after diagonalizing the mass matrix. It turns out that all 2 × 2

and 3× 3 sub-matrices have positive determinants. The tachyon first appears in the 4× 4

sub-matrix for the real parts of the complex moduli.

Let us compare the mass matrix of this model with the random matrix considered in

section 2.2. Changing the basis of the mass matrix to the canonical one: Xi,I , Y i,I through

the relations dXi = 1/2ki(dki + dbi), dXI = 1/2uI(duI + dcI), dY i = 1/2ki(dki − dbi),
dY I = 1/2uI(duI − dcI) at the extrema, we see that only the overall factor of the mass
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matrix depends on the parameter L. After calculating the deviations of the mass matrix

MAB assuming the center value to be zero, we get7

y ∼

(
1

14×13/2

∑
A<BM

2
AB

1
14

∑14
A=1M

2
AA

)1/2

= 0.274 . (3.15)

The numerical value of the relative ratio b/c obtained from (2.7) may not be applicable here

since y = 0.274 is already outside the domain of our random matrix estimation for small

y. However, we know that the probability P is Gaussianly suppressed already at y = 0.1

in (2.7), where b/c ' 1.8. So we expect that, for y = 0.274, P is Gaussianly suppressed

even around small N > 1. Thus it is not so surprising to have a tachyon at N = 14 in this

model.

Let us make a couple of comments here:

• The axionic directions with oscillating type potentials typically will have many min-

ima. This tends to provide stability along those directions. So one may exclude the

number of axions in the effective N used in the estimate of P. In the above model with

4 complex moduli, we may include the real parts of the Kahler (and dilation) moduli

and both the real and imaginary parts of the complex moduli: N = 3 + 2(4) = 11,

instead of N = 14.

• The inflationary slow-roll parameter η of the above model is given in [8]. For the

potential V > 0,

η = (min eigenvalue)× ∇
A∂AV

V
. −2.4 (3.16)

Here, η is negative, indicating the presence of a tachyon. The relatively slowly varying

η measures the ratio of the tachyon mass-squared with respect to the value of the

positive vacuum energy. That is, as we raise the vacuum energy of the potential V ,

the tachyon mass-squared become more negative correspondingly so the extremum

becomes more unstable. This indicates that the increase of the vacuum energy tends

to destabilize the vacuum.

3.1.2 A simple model with two moduli

Next we consider the two universal moduli subspace to clarify how the off-diagonal com-

ponents increase as we increase the positive cosmological constant. The conditions for

stability in the two universal moduli subspace was discussed and classified in [41]. Here

we focus on a model in which potentials of H3, F0, F2, R6 and O6-planes are turned on.

The potentials we consider are given by (3.9).

The stability conditions in two universal moduli subspace can be derived analytically.

The conditions relate the coefficients of the potential and the values of the moduli at

7The relative ratio calculated here is slightly different from the ratio y considered in section 2.2. This is

because the uplifting matrix B also includes diagonal entries, therefore deviation of diagonal components

in the total matrix is not the one for A. However, since the deviation of B is smaller than that of A, this

is not a bad approximation.
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Figure 3. Stable points at positive extrema, given values for some coefficients. The horizontal

plane is spanned by values of the determinant and the trace of the matrix. The determinant is

reaching zero as we increase the cosmological constant, with a fixed trace.

extrema. At an extremum, we can express two of the coefficients AH3 and A6 in terms of

the others and the moduli values [41]

AH3 = −AR6ρ
2

3
+
AF2ρ

4

3τ2
+
AF0ρ

6

τ2
, A6 = −4AR6τ

9ρ
− 14AF2ρ

9τ
− 2AF0ρ

3

τ
, (3.17)

where AH3 > 0, A6 < 0 are required. The stability conditions further constrain such

parameters:

AF2ρ
2

τ2
< AR6 <

11AF2ρ
2

7τ2
, AF0 >

−7A2
F2
ρ4 + 9AF2AR6ρ

2τ2 − 2A2
R6
τ4

33AF2ρ
6 − 21AR6ρ

4τ2
. (3.18)

Applying these conditions, we can define the positive potential value at the minima by

Vmin = −2AF2ρ

9τ4
+

2AR6

9ρτ2
> 0 . (3.19)

Following the Sylvester criteria (in linear algebra), positivity of both the determinant

and the trace of a Hermitian 2 × 2 matrix is required to ensure positivity of the entire

matrix. In figure 3, we have a cube spanned by Vmin, the determinant and the trace of

the matrix ∂ρi∂ρjV |min. All points within the cube satisfy the stability conditions at a

positive extremum. Now we see that when we fix the value of the trace, the determinant

goes to zero as we increase the cosmological constant.8 This corresponds to increasing

the off-diagonal components to values comparable to the diagonal entries. Therefore the

probability of a higher cosmological constant is more suppressed and less likely than that of

a small cosmological constant, following the discussion in section 2.2. Actually the upper

bound of the cosmological constant is given by nothing but the zero of the determinant.

As we increase the cosmological constant further in the model, we encounter a tachyon as

a result of the increase in off-diagonal components.

8This statement is opposite to what is observed in [46]. This is likely because W,Fa, Zab, Uabc are

assumed to be randomly drawn in [46] whereas these quantities are related in concrete models.
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4 Discussions

In this work, we use random matrix theory to estimate the probability of metastable dS

vacua in IIA string theory. Our purpose here is to quantify how unlikely we can stabilize all

of the Kähler moduli and the complex structure moduli simultaneously at a dS minimum

of a tree level potential. Including quantum effects will simply yield a more complicated

potential, which in turn tends to improve the randomness approximation. Assuming the

possibility of introducing some hierarchies in the mass matrix in this setup, we expect

different probabilities for different situations. Relatively large off-diagonal terms tend to

make the probability P of locating a meta-stable dS vacuum more Gaussianly suppressed

than exponentially suppressed. In the IIA models, we explained why tachyons are ubiqui-

tous in meta-stable de Sitter extrema in terms of the appearance of the off-diagonal terms

in the Hessian. An increase in the cosmological constant typically destabilizes the vacuum

as a result of the increase of off-diagonal components.

Note that, in the search for meta-stable dS vacua, the potential used (see (3.9) for

example) in the search typically introduces multiple free parameters. In attempts to find

meta-stable dS vacua, the search allows any appropriate values for these parameters. In

reality, these parameters and other hidden ones must be dynamically determined. In the

present searches, it is assumed that the modes associated with these parameters (there

can be a number of modes associated with each parameter) are heavy and have been

dynamically stabilized already. Furthermore, they have enough multiple stable solutions

so that their values needed for dS vacuum stability will be among the possible stabi-

lized solutions. This may be a reasonable assumption for low energy scales. However, as

the vacuum energy scale is increased to scales comparable to some of lighter masses of

these modes, we can no longer ignore the dynamics of these modes. For example, con-

sider the supergravity potential (3.7) (for simplicity without the D term). Suppose one

is allowed to increase the energy scale simply by adding a positive constant to K, with-

out changing the spectrum. By doing so, we may have to include the lighter part of

heavy moduli into the potential that have not been included in K and W so far. The

resulting relevant Hessian with increased number of moduli will not be simple in gen-

eral. So the typical relevant Hessian will grow in size and complication as the vacuum

energy is increased. Even though changing the overall scale does not alter the hierar-

chy between the diagonal and off-diagonal entries in the original mass matrix (which is

a subset of the entire mass matrix), the increase of the number of relevant moduli in-

creases the likelihood of instability as we argued in section 2.2. The implication of this

viewpoint is as follows: As the vacuum energy scale increases, the number of moduli to

be included in the analysis of the relevant mass-squared matrix increases. As a result,

the unavoidably complicated form of the matrix will imply that the probability of having

a meta-stable dS vacuum becomes increasingly Gaussianly unlikely. This reinforces our

view that:

The probability of finding a meta-stable de Sitter vacuum in the string landscape

becomes asymptotically Gaussianly unlikely as the vacuum energy is increased.
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Since not a single classically stable Type IIA dS vacuum has been found so far, this pro-

posal/conjecture is compatible with this fact, but at the same time, we cannot check the

proposal/conjecture in a non-trivial way. On the other hand, we do know some Type

IIB approximate solutions; so the above proposal may be checked (to some extent) for the

Type IIB regions of the landscape. However, all known meta-stable Type IIB vacua involve

non-perturbative contributions to the 4-dimensional effective potential, thus the analysis

is somewhat more subtle.

The probability of obtaining a dS vacuum in string theory was previously considered

in [9]. In this seminal work, the authors estimated such probability in the context of N = 1

supergravity (and for simplicity, they considered cases where the D-terms are absent). To

maintain stability, the authors required the off-diagonal terms to be suppressed relative

to the positive diagonal terms. Since this potential is a function of the superpotential W

and its derivatives, such off-diagonal suppression is achieved if we satisfy the condition

|DADBDCWψ̄A1 ψ̄
B
1 ψ̄

C
1 | < O(DW ) where the vector ψ1 specifies a direction for extrema

with the smallest eigenvalue, under the assumption of |DW | ∼ |W | (in Planck unit).

Since a term proportional to DADBDCW shows up in the off-diagonal components of the

Hermitian mass matrix, such a constraint provides a hierarchy between the diagonal and

off-diagonal entries. Now, we have shown that the probability of stability is Gaussianly

suppressed (as a function of the number of moduli) when the off-diagonal terms are within

an order of magnitude of the diagonal terms; and we typically expect one of the lightest

modes to turn tachyonic first. This implies that the above condition will be Gaussianly

unlikely to satisfy as the number of moduli increases.

Since the Hessian is built from W and its derivatives, the elements in the Hessian are

not totally random. However, for a complicated system with a large number of moduli,

we believe that some form of the central limit theorem should hold and our approach is

valid. While this paper was in preparation, we were informed that a more detailed model,

based on [9] using some random distributions of W and its derivatives has recently been

performed [46].

Furthermore, in our setup, we had in mind a much wider class of constructions, some of

which cannot be written in the form of an N = 1 supergravity potential without D terms;

in these cases, our approach should provide a good estimates of the probability P when

the hierarchy between the diagonal and the off-diagonal components of the Hessian can be

approximately estimated. We will report on our findings for the probability of metastable

dS vacua in IIB string theory in a forthcoming paper.
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Figure 4. Probabilities fits with the different form of probability function P = ae−fNg

. The

exponent g interpolates between 1 and 2 as a function g = 1.05 + 1.03e−0.0105/y.

A Other plot for random matrix

In this section, we show another plot for the hierarchical random matrices M = A + B,

analyzed in section section 2.2, with the fitting function P = ae−fN
g
.

In figure 4, we show the plot for the coefficient g. The value of g interpolates between

1 and 2 by a function:

g = 1.05 + 1.03e−0.0105/y. (A.1)

As mentioned, this form does not have the expected large N behavior with a fixed hierarchy

between diagonal and off-diagonal elements discussed in section 2.2, especially if the fitted

value of g is not close to 2. In these cases, it works mainly in the fitting region N = 4–20.

Once we extrapolate it to larger value of N , for example at N = 150, σA = 100, we get

Pexp = 0.157 while the simulation suggests smaller value Pobs = 0.0318.
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