69 research outputs found
Gravitational lensing in the Kerr-Randers optical geometry
A new geometric method to determine the deflection of light in the equatorial
plane of the Kerr solution is presented, whose optical geometry is a surface
with a Finsler metric of Randers type. Applying the Gauss-Bonnet theorem to a
suitable osculating Riemannian manifold, adapted from a construction by Naz\i
m, it is shown explicitly how the two leading terms of the asymptotic
deflection angle of gravitational lensing can be found in this way.Comment: 7 pages, 1 figure. Accepted by Gen. Rel. Grav. Version 2: change of
notation in sec.
A Stringy Mechanism for A Small Cosmological Constant
Based on the probability distributions of products of random variables, we
propose a simple stringy mechanism that prefers the meta-stable vacua with a
small cosmological constant. We state some relevant properties of the
probability distributions of functions of random variables. We then illustrate
the mechanism within the flux compactification models in Type IIB string
theory. As a result of the stringy dynamics, we argue that the generic
probability distribution for the meta-stable vacua typically peaks with a
divergent behavior at the zero value of the cosmological constant. However, its
suppression in the single modulus model studied here is modest.Comment: 36 pages, 8 figure
The Lyth Bound and the End of Inflation
We derive an extended version of the well-known Lyth Bound on the total
variation of the inflaton field, incorporating higher order corrections in slow
roll. We connect the field variation to both the spectral index of
scalar perturbations and the amplitude of tensor modes. We then investigate the
implications of this bound for ``small field'' potentials, where the field
rolls off a local maximum of the potential. The total field variation during
inflation is {\em generically} of order , even for potentials with
a suppressed tensor/scalar ratio. Much of the total field excursion arises in
the last e-fold of inflation and in single field models this problem can only
be avoided via fine-tuning or the imposition of a symmetry. Finally, we discuss
the implications of this result for inflationary model building in string
theory and supergravity.Comment: 10 pages, RevTeX, 2 figures (V3: version accepted for publication by
JCAP
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Nodal dynamics, not degree distributions, determine the structural controllability of complex networks
Structural controllability has been proposed as an analytical framework for
making predictions regarding the control of complex networks across myriad
disciplines in the physical and life sciences (Liu et al.,
Nature:473(7346):167-173, 2011). Although the integration of control theory and
network analysis is important, we argue that the application of the structural
controllability framework to most if not all real-world networks leads to the
conclusion that a single control input, applied to the power dominating set
(PDS), is all that is needed for structural controllability. This result is
consistent with the well-known fact that controllability and its dual
observability are generic properties of systems. We argue that more important
than issues of structural controllability are the questions of whether a system
is almost uncontrollable, whether it is almost unobservable, and whether it
possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page
Mathematics of Gravitational Lensing: Multiple Imaging and Magnification
The mathematical theory of gravitational lensing has revealed many generic
and global properties. Beginning with multiple imaging, we review
Morse-theoretic image counting formulas and lower bound results, and
complex-algebraic upper bounds in the case of single and multiple lens planes.
We discuss recent advances in the mathematics of stochastic lensing, discussing
a general formula for the global expected number of minimum lensed images as
well as asymptotic formulas for the probability densities of the microlensing
random time delay functions, random lensing maps, and random shear, and an
asymptotic expression for the global expected number of micro-minima. Multiple
imaging in optical geometry and a spacetime setting are treated. We review
global magnification relation results for model-dependent scenarios and cover
recent developments on universal local magnification relations for higher order
caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of
General Relativity and Gravitatio
Large Deviations of the Maximum Eigenvalue in Wishart Random Matrices
We compute analytically the probability of large fluctuations to the left of
the mean of the largest eigenvalue in the Wishart (Laguerre) ensemble of
positive definite random matrices. We show that the probability that all the
eigenvalues of a (N x N) Wishart matrix W=X^T X (where X is a rectangular M x N
matrix with independent Gaussian entries) are smaller than the mean value
=N/c decreases for large N as , where \beta=1,2 correspond respectively to
real and complex Wishart matrices, c=N/M < 1 and \Phi_{-}(x;c) is a large
deviation function that we compute explicitly. The result for the Anti-Wishart
case (M < N) simply follows by exchanging M and N. We also analytically
determine the average spectral density of an ensemble of constrained Wishart
matrices whose eigenvalues are forced to be smaller than a fixed barrier. The
numerical simulations are in excellent agreement with the analytical
predictions.Comment: Published version. References and appendix adde
The Wasteland of Random Supergravities
We show that in a general \cal{N} = 1 supergravity with N \gg 1 scalar
fields, an exponentially small fraction of the de Sitter critical points are
metastable vacua. Taking the superpotential and Kahler potential to be random
functions, we construct a random matrix model for the Hessian matrix, which is
well-approximated by the sum of a Wigner matrix and two Wishart matrices. We
compute the eigenvalue spectrum analytically from the free convolution of the
constituent spectra and find that in typical configurations, a significant
fraction of the eigenvalues are negative. Building on the Tracy-Widom law
governing fluctuations of extreme eigenvalues, we determine the probability P
of a large fluctuation in which all the eigenvalues become positive. Strong
eigenvalue repulsion makes this extremely unlikely: we find P \propto exp(-c
N^p), with c, p being constants. For generic critical points we find p \approx
1.5, while for approximately-supersymmetric critical points, p \approx 1.3. Our
results have significant implications for the counting of de Sitter vacua in
string theory, but the number of vacua remains vast.Comment: 39 pages, 9 figures; v2: fixed typos, added refs and clarification
Frequency of CD4+ and CD8+ T cells in Iranian chronic rhinosinusitis patients
Background: Chronic Rhinosinusitis (CRS) is a persistent inflammatory disease affecting paranasal sinuses. CRS is categorized into two distinct subgroups defined as CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). Although several immune cells are involved in the CRS pathogenesis, the role of T cells is not fully understood. The objective of the present study was to evaluate the frequency of CD4+ and CD8+ T cells and macrophages in the sinonasal mucosa of CRS patients, as well as to investigate the specific transcription factors for Th1, Th2, Th17, and Treg cells. Methods: In this study, 15 healthy controls, 12 CRSsNP, and 23 CRSwNP patients participated. CD4+, CD8+, and CD68+ cells were investigated in the sinonasal tissues using immunohistochemistry. The expression of transcription factors related to Th subsets (T-bet, GATA3, Ror-γt, and FoxP3) was evaluated using real-time PCR. Furthermore, CRSwNP patients were defined as eosinophilic when eosinophils consisted of more than 10 of total inflammatory cells. The Kruskal-Wallis, Mann-Whitney, and Spearman tests were used in statistical analyses. Results: The median (range) age of the studied groups was: 32 (14-67) for CRSwNP, 28 (10-43) for CRSsNP, and 27 (17-44) for controls. The number of eosinophils in CRSwNP patients was higher than two other groups, whereas neutrophils were elevated in both CRSwNP and CRSsNP groups in comparison to controls. The frequency of CD4+ and CD8+ T cells, macrophages, and total inflammatory cells were significantly increased in CRSwNP and CRSsNP patients compared with controls. The mRNA expression of GATA3 was increased in CRSwNP patients while mRNA expression of Ror-γt was elevated in CRSsNP patients. No significant difference was observed in T-bet mRNA expression among three groups. Both CRSwNP and CRSsNP patients showed decreased FoxP3 mRNA expression in comparison to controls. Conclusion: The frequency of CD4+ and CD8+ T cells was elevated in CRS patients. In addition, we demonstrated Th2 dominance in CRSwNP patients and Th17 dominance in CRSsNP patients, implicating different mechanisms may underlie the disease. Better CRS classification and targeted therapeutic strategies may be achievable by determining the pattern of infiltrating inflammatory cells. Therefore, further experimental investigations on T cells are needed. © 2018 The Author(s)
- …