2 research outputs found

    Identification and structural characterization of the neuronal luteinizing hormone receptor associated with sensory systems

    No full text
    Abstract The luteinizing hormone receptor (LHR) is a G protein-coupled receptor involved in regulation of ovarian and testicular functions. Here we show that the receptor is present also in specific areas of the peripheral and central nervous system and may thus have a broader functional role than has been anticipated. Full-length LHR mRNA and two receptor protein species of Mr 90,000 and 73,000, representing mature and precursor forms, respectively, were expressed in adult and developing rat nervous tissue, starting at fetal day 14.5. The receptor was capable of ligand binding because it was purified by ligand affinity chromatography, and human chorionic gonadotropin and LH were able to displace 125I-labeled human chorionic gonadotropin binding to fetal head membranes in a dose-dependent manner. Finally, two 5’-flanking sequences (∼ 2 and 4 kb) of the rat LHR gene were shown to direct expression of the lacZ reporter to specific areas of the peripheral and central nervous system in fetal and adult transgenic mice, especially to structures associated with sensory, memory, reproductive behavior, and autonomic functions. Importantly, the transgene activity was confined to neurons and colocalized with the cytochrome P450 side chain cleavage enzyme. Taken together, these results indicate that the neuronal LHR is a functional protein, implicating a role in neuronal development and function, possibly by means of regulating synthesis of neurosteroids

    Inefficient maturation of the rat luteinizing hormone receptor:a putative way to regulate receptor numbers at the cell surface

    No full text
    Abstract Increasing evidence suggests that the folding and maturation of monomeric proteins and assembly of multimeric protein complexes in the endoplasmic reticulum (ER) may be inefficient not only for mutants that carry changes in the primary structure but also for wild type proteins. In the present study, we demonstrate that the rat luteinizing hormone receptor, a G protein-coupled receptor, is one of these proteins that matures inefficiently and appears to be very prone to premature degradation. A substantial portion of the receptors in stably transfected human embryonic kidney 293 cells existed in immature form of Mr 73,000, containing high mannose-type N-linked glycans. In metabolic pulse-chase studies, only ∼20% of these receptor precursors were found to gain hormone binding ability and matured to a form of Mr 90,000, containing bi- and multiantennary sialylated N-linked glycans. The rest had a propensity to form disulfide-bonded complexes with a Mr 120,000 protein in the ER membrane and were eventually targeted for degradation in proteasomes. The number of membrane-bound receptor precursors increased when proteasomal degradation was inhibited, and no cytosolic receptor forms were detected, suggesting that retrotranslocation of the misfolded/incompletely folded receptors is tightly coupled to proteasomal function. Furthermore, a proteasomal blockade was found to increase the number of receptors that were capable of hormone binding. Thus, these results raise the interesting possibility that luteinizing hormone receptor expression at the cell surface may be controlled at the ER level by regulating the number of newly synthesized proteins that will mature and escape the ER quality control and premature degradation
    corecore