3,462 research outputs found
A Full Characterization of Quantum Advice
We prove the following surprising result: given any quantum state rho on n
qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of
two-qubit interactions), such that any ground state of H can be used to
simulate rho on all quantum circuits of fixed polynomial size. In terms of
complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which
supersedes the previous result of Aaronson that BQP/qpoly is contained in
PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in
power to untrusted quantum advice combined with trusted classical advice.
Proving our main result requires combining a large number of previous tools --
including a result of Alon et al. on learning of real-valued concept classes, a
result of Aaronson on the learnability of quantum states, and a result of
Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new
ones. The main new tool is a so-called majority-certificates lemma, which is
closely related to boosting in machine learning, and which seems likely to find
independent applications. In its simplest version, this lemma says the
following. Given any set S of Boolean functions on n variables, any function f
in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm
in S, such that each fi is the unique function in S compatible with O(log|S|)
input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines
needed to be changed to preserve our results. The revised definition is more
natural and has the same intuitive interpretation. 2. We needed properties of
Local Hamiltonian reductions going beyond those proved in previous works
(whose results we'd misstated). We now prove the needed properties. See p. 6
for more on both point
Spatially resolved electrochemistry in ionic liquids : surface structure effects on triiodide reduction at platinum electrodes
Understanding the relationship between electrochemical activity and electrode structure is vital for improving the efficiency of dye-sensitized solar cells. Here, the reduction of triiodide to iodide in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) room temperature ionic liquid (RTIL) is investigated on polycrystalline platinum using scanning electrochemical cell microscopy (SECCM) and correlated to the crystallographic orientation from electron backscatter diffraction (EBSD). Although the rate determining step in all grains was the first electron transfer, significant grain-dependent variations in activity were revealed, with grains with a dominant (110) crystallographic character exhibiting higher catalytic activity compared to those with a major (100) orientation. The SECCM technique is demonstrated to resolve heterogeneity in activity, highlighting that methods incorporating polycrystalline electrodes miss vital details for understanding and optimizing electrocatalysts. An additional advantage of the SECCM over single-crystal techniques is its ability to probe high index facets
Quantum walks as a probe of structural anomalies in graphs
We study how quantum walks can be used to find structural anomalies in graphs
via several examples. Two of our examples are based on star graphs, graphs with
a single central vertex to which the other vertices, which we call external
vertices, are connected by edges. In the basic star graph, these are the only
edges. If we now connect a subset of the external vertices to form a complete
subgraph, a quantum walk can be used to find these vertices with a quantum
speedup. Thus, under some circumstances, a quantum walk can be used to locate
where the connectivity of a network changes. We also look at the case of two
stars connected at one of their external vertices. A quantum walk can find the
vertex shared by both graphs, again with a quantum speedup. This provides an
example of using a quantum walk in order to find where two networks are
connected. Finally, we use a quantum walk on a complete bipartite graph to find
an extra edge that destroys the bipartite nature of the graph.Comment: 10 pages, 2 figure
Computation with narrow CTCs
We examine some variants of computation with closed timelike curves (CTCs),
where various restrictions are imposed on the memory of the computer, and the
information carrying capacity and range of the CTC. We give full
characterizations of the classes of languages recognized by polynomial time
probabilistic and quantum computers that can send a single classical bit to
their own past. Such narrow CTCs are demonstrated to add the power of limited
nondeterminism to deterministic computers, and lead to exponential speedup in
constant-space probabilistic and quantum computation. We show that, given a
time machine with constant negative delay, one can implement CTC-based
computations without the need to know about the runtime beforehand.Comment: 16 pages. A few typo was correcte
Decoherence in Quantum Walks on the Hypercube
We study a natural notion of decoherence on quantum random walks over the
hypercube. We prove that in this model there is a decoherence threshold beneath
which the essential properties of the hypercubic quantum walk, such as linear
mixing times, are preserved. Beyond the threshold, we prove that the walks
behave like their classical counterparts.Comment: 7 pages, 3 figures; v2:corrected typos in references; v3:clarified
section 2.1; v4:added references, expanded introduction; v5: final journal
versio
Quantum Commuting Circuits and Complexity of Ising Partition Functions
Instantaneous quantum polynomial-time (IQP) computation is a class of quantum
computation consisting only of commuting two-qubit gates and is not universal
in the sense of standard quantum computation. Nevertheless, it has been shown
that if there is a classical algorithm that can simulate IQP efficiently, the
polynomial hierarchy (PH) collapses at the third level, which is highly
implausible. However, the origin of the classical intractability is still less
understood. Here we establish a relationship between IQP and computational
complexity of the partition functions of Ising models. We apply the established
relationship in two opposite directions. One direction is to find subclasses of
IQP that are classically efficiently simulatable in the strong sense, by using
exact solvability of certain types of Ising models. Another direction is
applying quantum computational complexity of IQP to investigate (im)possibility
of efficient classical approximations of Ising models with imaginary coupling
constants. Specifically, we show that there is no fully polynomial randomized
approximation scheme (FPRAS) for Ising models with almost all imaginary
coupling constants even on a planar graph of a bounded degree, unless the PH
collapses at the third level. Furthermore, we also show a multiplicative
approximation of such a class of Ising partition functions is at least as hard
as a multiplicative approximation for the output distribution of an arbitrary
quantum circuit.Comment: 36 pages, 5 figure
Spatial search and the Dirac equation
We consider the problem of searching a d-dimensional lattice of N sites for a
single marked location. We present a Hamiltonian that solves this problem in
time of order sqrt(N) for d>2 and of order sqrt(N) log(N) in the critical
dimension d=2. This improves upon the performance of our previous quantum walk
search algorithm (which has a critical dimension of d=4), and matches the
performance of a corresponding discrete-time quantum walk algorithm. The
improvement uses a lattice version of the Dirac Hamiltonian, and thus requires
the introduction of spin (or coin) degrees of freedom.Comment: 5 pages, 1 figur
SU(3) Quantum Interferometry with single-photon input pulses
We develop a framework for solving the action of a three-channel passive
optical interferometer on single-photon pulse inputs to each channel using
SU(3) group-theoretic methods, which can be readily generalized to higher-order
photon-coincidence experiments. We show that features of the coincidence plots
vs relative time delays of photons yield information about permanents,
immanants, and determinants of the interferometer SU(3) matrix
Operator renewal theory and mixing rates for dynamical systems with infinite measure
We develop a theory of operator renewal sequences in the context of infinite
ergodic theory. For large classes of dynamical systems preserving an infinite
measure, we determine the asymptotic behaviour of iterates of the
transfer operator. This was previously an intractable problem.
Examples of systems covered by our results include (i) parabolic rational
maps of the complex plane and (ii) (not necessarily Markovian) nonuniformly
expanding interval maps with indifferent fixed points.
In addition, we give a particularly simple proof of pointwise dual ergodicity
(asymptotic behaviour of ) for the class of systems under
consideration.
In certain situations, including Pomeau-Manneville intermittency maps, we
obtain higher order expansions for and rates of mixing. Also, we obtain
error estimates in the associated Dynkin-Lamperti arcsine laws.Comment: Preprint, August 2010. Revised August 2011. After publication, a
minor error was pointed out by Kautzsch et al, arXiv:1404.5857. The updated
version includes minor corrections in Sections 10 and 11, and corresponding
modifications of certain statements in Section 1. All main results are
unaffected. In particular, Sections 2-9 are unchanged from the published
versio
Thermodynamic phase transitions for Pomeau-Manneville maps
We study phase transitions in the thermodynamic description of
Pomeau-Manneville intermittent maps from the point of view of infinite ergodic
theory, which deals with diverging measure dynamical systems. For such systems,
we use a distributional limit theorem to provide both a powerful tool for
calculating thermodynamic potentials as also an understanding of the dynamic
characteristics at each instability phase. In particular, topological pressure
and Renyi entropy are calculated exactly for such systems. Finally, we show the
connection of the distributional limit theorem with non-Gaussian fluctuations
of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad.
Sci. USA 85, 4591 (1988)].Comment: 5 page
- …