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Abstract

Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation
consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown
thatif there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy
collapses to the third level, which is highly implausible. However, the origin of the classical
intractability is still less understood. Here we establish a relationship between IQP and computational
complexity of calculating the imaginary-valued partition functions of Ising models. We apply the
established relationship in two opposite directions. One direction is to find subclasses of IQP that are
classically efficiently simulatable by using exact solvability of certain types of Ising models. Another
direction is applying quantum computational complexity of IQP to investigate (im)possibility of
efficient classical approximations of Ising partition functions with imaginary coupling constants.
Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for
almost all imaginary coupling constants even on planar lattices of a bounded degree.

1. Introduction

Quantum computation has a great possibility to offer substantial advantages in solving some sorts of
mathematical problems and also in simulating physical dynamics of quantum systems. A representative instance
is Shor’s factoring algorithm [1], which solves integer factoring problems in polynomial time, while no
polynomial-time classical algorithm has been known. Recently, quantum algorithms for approximating Jones
polynomial [2, 3], Tutte polynomial [4], and Ising partition functions [5-7] have been found, and they are shown
to be BQP-complete in certain parameter regions. Furthermore, there are some evidences that quantum
computation, more precisely, BQP (bounded-error quantum polynomial-time computation [8]), can solve
problems outside the polynomial hierarchy (PH) [9, 10, 11]. These results strike the extended Church-Turing
thesis [8, 12, 13], which states that every reasonable physical computing devices can be simulated efficiently (with
a polynomial overhead) on a probabilistic Turing machine. One of the most revolutionary and challenging goals
of human beings is to realize a universal quantum computer and verify such quantum benefits in experiments.
However, experimental verification, which is the most essential part in science, is still extremely hard to achieve,
requiring a huge number of qubits and extremely high accuracy in controls.

Is there any possible pathway to verify computational complexity benefits of quantum systems that are
realizable in the near future, say, one-hundred-qubit (or particle) systems under reasonable accuracy of controls
[14]2 If there is such a subclass of quantum computation that consists of experimental procedures much simpler
than universal quantum computation but is still hard to simulate efficiently in classical computers, experimental
verification of complex quantum systems reaches a new phase.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. The summary of results obtained in this work.

Aaronson and Arkhipov introduced BOSONSAMPLING [15], a sampling problem according to the
probability distribution of # bosons scattered by linear optical unitary operations. The probability distribution is
given by the permanent of a complex matrix, which is determined by the linear optical unitary operations.
Calculation of the permanent of complex matrices is known to be #P-hard [16, 17]. Since a polynomial-time
machine with an oracle for #P can solve all problems in the PH according to Toda’s theorem [18], an exact
classical simulation (in the strong sense [19, 20] meaning a calculation of the probability distribution of the
output) of BOSONSAMPLING is highly intractable in a classical computer. They showed under assumptions of
plausible conjectures that if there exists an efficient classical approximation of BOSONSAMPLING (classical
simulation in the weak sense [19, 20] meaning a sampling according the probability distribution of the output),
the PH collapses to the third level, which is unlikely to occur. (The detailed notions of classical simulation are
provided in section 3.) This result brings a novel perspective on linear optical quantum computation and drives
many researchers into the recent proof-of-principle experiments [21-28].

Another subclass of quantum computation of this kind is instantaneous quantum polynomial-time
computation (IQP) proposed by Shepherd and Bremner [29]. IQP consists only of commuting unitary gates,
such as exp[if [T, Zi]- Here 0 € [0, 2) is arotational angle, Z indicates the Pauli operator on the kth qubit,
and Sindicates a set of qubits on which the commuting gate acts. (A detailed definition will be provided in the
next section.) The input is given by [+)®" with | +) = (|0) + |1))/~/2, and the output qubits are measured in
the X-basis. Since all unitary operations are commutable with each other, there is no temporal structure in the
circuits. (This is the reason why it is called instantaneous quantum polynomial-time computation.) The
commutability implies that QP cannot perform an arbitrary unitary operation for the input qubits and hence
seems to be less powerful than standard quantum computation, i.e., BQP. Nevertheless, Bremner, Jozsa, and
Shepherd showed that if there exists an efficient classical algorithm that samples the outcomes according to the
probability distribution of IQP with a certain multiplicative approximation error, then the PH collapses to the
third level. While the collapse of the PH to the third level is not as unlikely as P = NP, itis also considered to be
highly implausible. This result is obtained by introducing postselection and using the fact that post-BQP = PP
shown by Aaronson [30]. Here postselection means that an additional ability to choose, without any
computational cost, arbitrary measurement outcomes of possibly exponentially decreasing probabilities.
However, in comparison to BOSONSAMPLING [ 15, 31], the origin of the classical intractability of IQP is still not
well understood.

2. Brief summary of the results

The purpose of this paper is to further explore IQP by relating it with computational complexity of calculating
imaginary-valued Ising partition functions, which has been well studied in statistical physics, condensed matter
physics, and computer science.

Specifically we obtain the following results (see figure 1):

(i) We reformulate IQP from a viewpoint of computational complexity of calculating Ising partition functions.
The probability distribution of the output of IQP including its marginal distributions is mapped into an
Ising partition function with imaginary coupling constants (theorems 1 and 2).
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(ii) By using the above relation, we specify classically simulatable classes of IQP, which correspond to exactly
solvable Ising models (theorems 3 and 4). For example, IQP that consists only of nearest-neighbor two-
qubit commuting gates in two-dimensions (2D) is classically simulatable, at least in the weak sense,
irrespective of their rotational angles.

(iii) We show that a multiplicative approximation of the Ising partition functions with almost all imaginary
coupling constants is #P-hard even on 2D planar lattices with a bounded degree (theorem 5). So there is no
polynomial-time approximation scheme unless the PH collapses completely.

The first result bridges IQP and computational complexity of imaginary-valued Ising partition functions.
Since an exact calculation of the partition functions takes an exponential time in the worst case, the above
connection tells us the origin of hardness of classical simulation of IQP (an exact calculation of Ising partition
functions is #P-hard even in the ferromagnetic case [32, 33]). Only restricted models are known to be exactly
solvable such as Ising models on the 2D planar lattices without magnetic fields.

One might naively expect that a subclass of IQP, which is mapped into an exactly solvable Ising model, is
classically simulatable in the strong sense [19, 20], since the joint probability distribution of the output can be
calculated efficiently. However, there are exponentially many instances of the measurement outcome, and hence
an efficient calculation of the joint probability distribution of an output does not directly applied to an efficient
weak simulation of IQP. For example, in [19], it is pointed out that there exists the case where the joint
probability distribution is easily calculated but its marginals are rather hard to calculate. In order to construct an
efficient weak simulation of IQP, we need the marginal distributions, which allow a recursive simulation of the
sampling problem by using the Bayes theorem. To this end, we map not only the joint probability distribution
but also the marginal distributions of IQP into the Ising partition functions on another lattices. In the proof, we
virtually utilize measurement-based quantum computation (MBQC) [34] on graph states [35], which are
defined associated with the QP circuits.

The established relationship between |QP and Ising partition functions is useful since computational
complexity of Ising models have been well studied. We can apply preexisting knowledge to understand quantum
computational complexity of IQP. Specifically, in the second result, we provide classical simulatable classes of
IQP by using exact solvability of certain types of Ising models. We provide two examples of classically
simulatable classes of IQP. One is based on the sparsity of the commuting gates. Another is a class of IQP that
consists only of two-qubit commuting gates acting on nearest-neighbor qubits on the 2D planar graphs, which
we call planar-1QP. Planar-IQP is mapped into a two-body Ising model on a 2D planar lattice without magnetic
fields, which is known to be solvable by using the Pfaffian method [32, 36, 37]. In the proof, we also utilize
properties of graph states in order to renormalize random im/2 magnetic fields into two-body interactions,
which originated from the random nature of the measurements. Then the marginal distributions can be
efficiently calculated irrespective of their rotational angles by using the Pfaffian method [32, 36, 37].

On the other hand, IQP consisting of single- and two-qubit commuting gates acting on a 2D planar graph is
sufficient to simulate universal quantum computation under postselection [38]. (Hereafter, such a property that
a quantum computational task A can simulate universal quantum computation under postselection is called as
universal-under-postselection.) This fact and the above classically simulatable class imply that single-qubit
rotations play a very important role for IQP to be classically intractable. Actually single-qubit rotations make a
drastic change of complexity from almost strongly simulatable to not simulatable even in the weak sense. A
similar result is also obtained for Toffoli-Diagonal circuits, where the Hadamard gates at the final round plays
very important role [19].

In the final result, we apply the first result in an opposite direction, from quantum complexity to classical
one. We consider certain universal-under-postselection instances of IQP to understand classical complexity of
calculating the Ising partition functions. Specifically we show that a multiplicative approximation of Ising
partition functions (corresponding to a strong simulation of IQP with a multiplicative error) is #P-hard for
almost all imaginary coupling constants even on 2D planar lattices with a bounded degree. Hence if there exists a
fully polynomial-time classical approximation scheme, it results in a complete collapse of the PH. This can be
viewed as a ‘quantum proof” of #P-hardness of approximating the imaginary Ising partition functions.
Aaronson’s post-BQP = PP theorem [30], which is employed to show the above result, is also utilized to
provide a ‘quantum proof’ [39] of #P-hardness of approximating the permanent [17] and the Jones polynomial
[40] with a multiplicative error.

The rest of the paper is organized as follows. In section 3, we introduce the definition and useful properties of
the graph states in order to fix the notation. Then we review IQP and the postselection argument introduced by
Bremner, Jozsa, and Shepherd. We also mention how to utilize post-BQP = PP theorem by Aaronson [30] to
obtain classical complexity results. As the final part of the preliminary section, we summarize related works on
commuting quantum circuits and quantum and classical computational complexity of calculating the Ising
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partition functions. In section 4, we establish a relationship between QP and Ising partition functions, not only
for the joint probability distribution of the output but also for its marginal distributions. In section 5, we
demonstrate two classically simulatable classes of IQP. One is based on the sparsity of the IQP circuits. Another
is based on exact solvability of the Ising models on the 2D planar lattice without magnetic fields. In section 6, we
apply the relationship between |QP and Ising partition functions in an opposite direction to investigate (im)
possibility of an efficient classical approximation scheme of the Ising partition functions with imaginary
coupling constants. Section 7 is devoted to conclusion and discussion.

3. Preliminary

In this section, we summarize preliminary knowledges to understand our main results. Fundamental properties
of the graph states are provided in section 3.1. Complexity theoretical notions are provided in section 3.2. The
existing results on IQP are reviewed in section 3.3, where the postselection argument is explained in detail. In
section 3.4, we present an interesting application of post-BQP = PP theorem to show hardness of strong
simulatability. Related works are summarized in section 3.5.

3.1. Graph states and their properties

In the proofs of the main theorems, we work with a measurement-based version of IQP, namely MBIQP,

introduced by Hoban et al [41]. The reason is that transformations on the resource state for MBQC [34], so-

called graph states [35], are much easier and more intuitive than transformations on the unitary gates

themselves. Here we introduce the definition and useful properties of graph states in order to fix the notations.
The Pauli matrix on the ith qubitis denoted by A; (A = I, X, Y, Z). The Hadamard gate is denoted H. The

eigenstates of Z with eigenvalues +1 and —1 are denoted by |0) and | 1), respectively. The eigenstates of X with

eigenvalues +1 and —1 are denoted by |+) and | — ), respectively. We denote the controlled-A gate acting on the

ith (control) and jth (target) qubits by A; j(A) = [0) (0] ® I + |1) (1] ® A.Specifically, A;;(Z) = Aj;i(Z)

and I‘I]AZJ (Z)I‘I] = Ai,j (X)

Definition 1 (Graph state). Suppose G = (V, E) is a graph consisting of vertices Vand edges E. We define the
neighbor N of i as the set of vertices adjacent to vertex i. An operator K; = X; H]' cn; Zjis defined for each vertex
i. The graph state |G) is defined as the simultaneous eigenstate of the operator K; with eigenvalue 41 for all i:

KiG) = |G).

The above relation reads that the graph state | G) is stabilized by the operator K; for all i. Such a state is called a
stabilizer state. The operator K;, which stabilizes the stabilizer state, is called a stabilizer operator. A detailed
description of the stabilizer formalism could be found in [42, 43].

The graph state | G) is generated from a tensor product state of |4) by performing A; ;(Z) on the pairs of
qubits connected by edges (i, j) € E:

|G) = [ IT Ai,j(Z)]l + )@IVI,

(i,j)€E

This can be confirmed as follows. The product state | +)®!V1is the eigenstate of X; with eigenvalue +1 for all
i € V,andhence X;|+)*I"! = | 4 )*IV. Byapplying []; . A;j(Z) for both sides, we obtain

( I1 Ai,j(Z)]Xi|+>®IV|:( II Ai,j(Z)]I + )&V

(i,j)€E (i,j)€E

@Ki( H Ai,j(Z)]|+>®|V|={ H Ai,j(Z)]l + )@V

(.))EE (,))EE

where we used the fact that A; j(2)X; = X;Z;A; ;(Z). This is the definition of the graph state, and we
conclude |G) = ([ e Aij(2))] + y@Ivi

In the proofs of the main theorems, we repeatedly consider single-qubit projective measurements on the
graph state and the resultant post-measurement graph state. In the following we will provide two important facts
on the graph states under projective measurements in certain bases.
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Fact 1 (Z-basis measurement). If the kth qubit of the graph state | G) is measured in the Z-basis, the resultant
post-measurement state is the graph state associated with the graph G’ = G\ k, where the byproduct operator
B, = HjeM Zjislocated according to the measurement outcome my, € {0, 1},i.e., By*|G’).

See appendix A.1 for the proof. Intuitively, the Z-basis measurement on the kth qubit removes the kth qubit
from the graph state, and then the byproduct operator By is located according the measurement outcome 1.
Next we consider a projective measurement on the kth qubit in the
{10k my) = XM (e + ) + ei%|—)) /2 } basis, where m; € {0, 1} is the measurement outcome.

Fact 2 (Remote Z-rotation). The projective measurement of the kth qubit on the graph state |G) in the {6y, ,,,) }
basis results in

exp|i(x + mypm/2) H Z |G\k)/ﬁ.
JEN

See appendix A.2 for the proof.

The measurement in the { |6, ,,,) } basis induces a multi-body Z rotation on the qubits adjacent to the kth
qubit. The norms of the post-measurement states are both 1,/2, which indicates that the outcomes my, = 0, 1
appear randomly.

Another class of measurements, which is frequently used in MBQC, is the measurement in a {e'|+) } basis.
Itis known that adaptive measurements in these bases on a certain graph state is enough to perform universal
quantum computation, i.e., BQP [34]. Here the adaptive measurement means to change the following
measurement angles according to the previous measurement outcomes in order to handle the random nature of
the measurements. This process is often called a feedforward. A wide variety of graph states have been known to
be universal resources for MBQC [35].

3.2. Definitions of complexity theoretical notions
Here we provide definitions of complexity theoretical notions, which are relevant to our main arguments.
When we consider classical simulation of quantum tasks, there are two important notions of simulatability.

Definition 2 (Strong and weak simulations [19, 20]). Suppose C is a uniformly generated quantum circuit of a
model of quantum computation A (e.g., IQP, one-clean-qubit model [44], and universal quantum computation,
etc). The probability distribution of the output x (classical bits) is denoted by P4 (x|C). An efficient weak
simulation of A is a classical polynomial-time randomized computation that samples x with the
probability P, (x|C).

On the other hand, an efficient strong simulation of a quantum circuit C for a given output x is a classical
polynomial-time (randomized) computation that calculates the probability P, (x|C) including its marginal
distributions Y, P4 (x|C) with respect to an arbitrary subset x’ of the output bits x.

In addition to these notions of classical simulation, we can further consider types of approximations. In an
approximated simulation with a multiplicative error 1 < ¢, we can replace the probability distribution P, (x|C)
with its approximation P3P’ (x|C) that lies inside the following approximation range

1 a
:PA(xlC’) < PP (x|0) < ey (x[0).

Apparently, if we can simulate A in the strong sense, we can sample the output in the weak sense. Thus a
strong simulation trivially includes a weak one. In fact, it has been known that a strong simulation is much
harder than a weak simulation, i.e., what a model of quantum computation A can actually do. For example, an
exact strong simulation of the output of universal quantum computation is #P-hard [19]. We should also note
that, in strong simulation, calculation of the marginal distributions is crucial, since there is the case where a
strong simulation of the output probability (joint probability) is easy but its marginal distributions are hard to
calculate [19].

In the proof of the main theorems, we frequently use the postselection argument; two complexity classes are
compared by assuming a fictitious ability to postselect a desired output, whose probability can be exponentially
small. To this end, the postselected class, post-A, is defined as a class of decision problems solvable by using a
computational model associated with A (e.g. instantaneous polynomial-time quantum computation for IQP,
universal quantum computation for BQP, and and polynomial-time classical randomized computation for
BPP) with abounded error under postselection [30].
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Definition 3 (Postselected class). A language L is in the class post-A iff there exists a uniform family {C,, } of
circuits of a computational model associated with A, where a single line output register O, (for the L-
membership decision problem) and a (generally O(poly(n) )-line) postselection register B, are specified
such that

(1) if w € Lthen Prob(O, = 1|B, = 00...0) > 1/2 + 6,
(ii) if w ¢ L then Prob(O, = 1B, = 00...0) < 1/2 — 6,

withaconstant 0 < § < 1/2.

In [30], post-BQP is shown to be equal to PP, a class of probabilistic computation whose success probability
is greater than 1/2 (possibly unbounded).

In the postselection argument, we compare two postselected complexity classes via the PH. The PHis a
natural way of classifying the complexity of problems (languages) beyond NP (nondeterministic polynomial-
time computation) using oracles. A computation A with an oracle for B is denoted by A B. Further, the
nondeterministic version of A is denoted by ‘N’A. The level-k class A of the hierarchy is defined recursively by
Ay, = PN Then the PH is defined as the union PH = U, A of them. NP = P implies a collapse of the HP
to F:[éle first level, that is, the PH collapses completely. It is known that P Pos-BPP js included in A; [45],and PH C
PPP18].

3.3. Instantaneous quantum polynomial-time computation
Here we introduce |QP and its measurement-based version. We first define |QP:

Definition 4 (IQP by Bremner et al [29, 38]). Let 7 be the number of qubits. A commuting gate is defined by

D(0;, S;) = exp [iej H Zk],

keSj

where 6; € [0, 27) is a real number meaning the rotational angle, and {S;} is a set of subsets of {1, 2, ...n},on
which the commuting gates act. We refer to a poly(n) number of commuting gates, including the input state
|+)®" and the X-basis measurements, as an QP circuit. IQP is defined as a sampling problem from the IQP
circuit, whose probability distribution is given by

2

Pigpr({si} [{0;}, {Si}) =

>

i=1 j

where s; € {0, 1} is the measurement outcome and |+;,) = Z%[ + ).

For each commuting circuit, we can naturally define a bipartite graph G = (V4 U Us, E), where V, and Up
are disjoint sets of vertices, and every edge € E connects a vertex in V4 with another in Up. Each vertex v; € Vj is
associated with the ith input qubit of the IQP circuit, and hence | V| = n.Eachvertex u; € Uy is associated with
the jth commuting gate D (6}, S;), and hence |Up| = poly(n). The set of edge Eis defined as
E = {(u;, vj)|u; € Up, i € Sj},thatis, the set S;specifies the vertices v; that are connected with the vertex ;. For
a given weighted bipartite graph G = (V4 U Us, E, {0;}), where a weight 0 is defined on each vertex u; € Us,
we can define an IQP circuit.

By using definition 1 and fact 2, IQP can be rewritten as MBQC on a graph state | G) associated with the
graph G = (V4 U Up, E). Inthis case, the set V,, of vertices corresponds to S;. More precisely, for a given
bipartite graph state G = (V, U Up, E) and weights {6;}, measurement-based IQP (MBIQP) is defined as
follows:

Definition 5 (MBIQP by Hoban et al [41]). MBIQP is defined as a sampling problem according to the
probability distribution

Pusiqr ({1}, {my} [0}, G) = | @ (4| @ (Ojm)IG) |

vieVy u;jc Up

where m,, € {0, 1}, m,, € {0, 1}and|0j,mw> = X" (e ) 44 ) + e]4)) /2.
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The bit strings {m,,} and {m,, } correspond to the measurement outcomes on the qubits belonging to V4 and
Us, respectively. We should note that there is no temporal order in the measurements since there is no
feedforward of the measurement angles in MBIQP.

Then we can prove MBIQP = IQP.

Lemma 1 (MBIQP = IQP by Hoban et al [41]). MBIQP and IQP are equivalent in the sense that if one sampler
exists, another sampler can be simulated.

Proof. Since a stabilizer operator of the graph state is given by Ky = Xy I en;, Zvo Kl G) = |G)foreach
€N,

vertex u; € Up. By using this equality, we obtain

2

pMBIQP({mv,‘}a {mu]}l{ej}) G)= ® <+mvi| ® <0j,m,‘j|( H K:;u]]lG>

;€ Vy u; € Up u]EUB
m,. 2
'
=1 Q (+m,| ® @Gd| IT | II 2. IG)
v;eVy quUB quUB 1/,-6./\/',4)-
=27 1UIPgp ({si} [ {6;), {SiD), M

where m,, and s; are related via

si=m, & [ &b muj].

”jE-/\/v,

In the above, we used the facts that each measurement outcome {m,, } is randomly distributed with probability
1/2,and the projection (0; o| results in the commuting gate D (6;, S;) (see fact 2). The above equality means that,
regardless of the measurement outcomes {,,} and {m,,}, we can simulate IQP by using MBIQP.

On the other hand, by using a random bit string {1, } with an equal probability 1/2 for each bitand {s;}
sampled from the QP circuit, we obtain {m,, = s; Buen, M} and {m, }, which is equivalent to the output of

MBIQP. O

As mentioned previously, there is no feedforward for the measurement angles in MBIQP, and hence the
measurements can be done simultaneously. This means that MBIQP cannot perform universal quantum
computation in MBIQP unless constant depth circuits can simulate universal quantum computation. However,
if postselection is allowed, we can choose the measurement outcomes in such a way that no byproduct operator
is applied. Thus, with an appropriately chosen graph structure and weights, we can simulate universal quantum
computation with the commuting circuits under postselection.

This means that MBIQP with an appropriate graph state and weights (measurement angles) is universal-
under-postselection, and hence post-MBIQP = post-BQP. On the other hand, Aaronson showed that post-
BQP = PP [30]. Accordingly, post-IQP = post-MBIQP = PP.

In order to simulate post-BQP, it is sufficient to consider post-IQP or post-MBIQP associated with planar
bipartite graphs G = (V4 U Up, E) with|S;| < 2and 0; = 7/8 forall j[38]. (As shown in section 6, we can
obtain the same result not only for 6; = 7 /8 but also for almost all angles ¢;.) In this case, each instance is
encoded into a structure of a graph. In another encoding, we can fix the structure of the graph but choose each
angle 0; from {7 /4, w/8, 0}. Specifically, §; = 0 corresponds to a deletion of vertex u; from the graph (see fact
1). 0; = 7/4 and 7 /8 correspond to Clifford and non-Clifford gates, respectively. Examples of graphs and
weights of MBIQP that are universal-under-postselection are presented in figures 2(a) and (b).

In [38], Bremner, Jozsa, and Shepherd showed that if IQP is weakly simulatable by using a classical
randomized algorithm with a multiplicative approximation error 1 < ¢ < /2:

1
—Pigp < Pidp < cProps
c

then the PH collapses to the third level. The collapse of the PH to the third level is not as unlikely as NP = P but
still thought to be highly implausible.

Lemma 2 (Hardness of IQP by Bremner et al [38)). If QP is weakly simulatable by a classical polynomial time
randomized algorithm within multiplicative error 1 < ¢ < N2, PP = post-BPP, resulting in a collapse of the PH
to the third level.
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Figure 2. (a) An example of a planar bipartite graph and weights for universal IQP, where 6; € {0, 7/8, m/4}. (b) Another example of
a planar bipartite graph and weights, where §; = /4 for all jwith |S;| = 2 (corresponding to two-qubit commuting gates) and

0; € {0, w/8} forall jwith |S;| = 1(corresponding to single-qubit rotations). The associated graph state is a decollated version of the
brickwork state utilized in blind quantum computation [46, 47]. Each dotted square indicates a unit cell of the brickwork state. The
brickwork state allows us to perform universal quantum computation with measurements onlyin {|+) } and {e!("/®7|+) } bases. A
similar brickwork state is employed for hardness proof of an IQP with random measurements on a translation invariant lattice [89].

Proof. (See also [38].) Let L be a language decided by post-IQP with abounded error 0 < § < 1/2, thatis,
if we L, Piop(O, = 1|B, = 00...0) > 1/2 + 6, Q)
if w¢ L, Piop(O, = 1|P, = 00...0) < 1/2 — 6, 3)
withaconstant 0 < § < 1/2.Suppose we have a classical polynomial-time randomized algorithm that weakly
simulates IQP, i.e., a sampling according to the probability distribution Piqp (O, = x, P, = y) witha

multiplicative error 1 < ¢ < /2. Under postselection, we can simulate post-IQP, a sampling according to the
probability distribution

P (0, = x, B, = 00...0)
P, (P, =00..0)

P&, (Qy = x|B, = 00..0) =

The multiplicative error for the conditional probability PI%)P(QW = x|P, = 00..0) isbounded by ¢*:
1 a
_ZPIQP(QW = x|B, = 00..0) < PI(gP(QW = x|P, = 00..0) < CZPIQP(QW = x|B, = 00..0).
c

Using this and equations (2) and (3), we obtain

if w € L, PR(Qy = 1B, = 00..0) > —=(1/2 + 6),
Cc

if w¢ L, P, (Q, = 1|B, = 00..0) < c*(1/2 — ).

Thusifboth ¢=2(1/2 + 6) > 1/2and c?(1/2 — &) < 1/2 are satisfied, we can construct a classical
randomized algorithm that decides L with bounded error. In other words, post-IQP C post-BPP. Since post-
IQP does not depend on the level of error §, we can choose any value 0 < § < 1/2. By using the fact that IQP is
universal-under-postselection, we conclude thatif ¢ < J2,PP = post-BQP = post-1QP C post-BPP.
Apparently, post-BQP includes post-BPP, and hence PP = post-BPP.

Due to Toda’s theorem [18], P with an oracle for PP includes whole classes in the PH, i.e., PH C PPP.On
the other hand, P with an oracle for post-BPP is in the third level of the PH, i.e, PP°st-BPP C A Thus
PP = post-BPP implies a collapse of the PH to the third level, which is highly implausible. In other words,
unless the PH collapses to the third level, there exists no efficient weak classical simulation of IQP. O

3.4. Strong simulation and post-BQP = PP theorem

Aaronson’s theorem, post-BQP = PP [30], is quite useful to obtain not only quantum complexity results
combined with the postselection argument by Bremner et al [38], but also to provide ‘quantum proofs’ of
classical complexity results [39]. For example, in [30], Aaronson provided alternative and much simpler proof
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that PP is closed under intersection [48]. Moreover, by using post-BQP = PP, we can show that strong
simulation of some computational tasks, which are as hard as post-BQP under postselection, is #P-hard even
in an approximated case with a multiplicative error:

Lemma 3 (Strong simulation and post-BQP = PP). Suppose a (classical or quantum) computation A is
universal-under-postselection and has enough postselection ports, so that post-A = post-BQP. If the output of A is
efficiently strongly simulatable with a multiplicative error 1 < ¢ < /2 (orifthereis a fully polynomial-time classical
approximation scheme for the output distribution of A), the PH collapses completely.

Proof. Suppose the probability distribution Py (O, = x, B, = y) of the output of A can be strongly simulated
with a multiplicative error 1 < ¢ < /2:

lPA(OW =x,B,=00..0) < PO, =x B, =00..0) < c&(O, = x, P, =00..0).
c
By using this, we can calculate the postselected probability distribution

P¥ (O, = x, B, = 00...0)
S o PY (O, = %', B, = 00...0)

P®(0, = x|P, = 00...0) =

with a multiplicative error 1 < ¢ < 2. Since post-A = post-BQP = PP, if we can calculate

PP (O, = x|P, = 00...0) efficiently with a multiplicative error ¢? < 2, itis sufficient to decide a complete
problem in PP. Since PPP = P#P, the multiplicative approximation is enough to find a solution of
#P-complete problem and hence #P-hard. Therefore, the existence of such an efficient strong simulation with
the multiplicative error 1 < ¢ < /2 results in an entire collapse of the PH. O

The above lemma indicates that if a function f (x) of interest is given as a probability distribution of some
quantum task that is universal-under-postselection, then computation of f (x) is #P-hard even in the
approximated case with a multiplicative error. This argument has been utilized by Kuperberg to show #P-
hardness of approximating the Jones polynomial with a multiplicative error [40]. In [17], Aaronson provided an
alternative proof of #P-hardness of calculating the permanent [16] based on the above argument and the KLM
scheme [49]. We will also utilize it to provide the #P-hardness of a multiplicative approximation of Ising
partition functions with an imaginary parameter region, in section 6. Moreover, lemma 3 also implies that there
is a good chance for a quantum computer in an approximation a function f (x) with an additive error under an
appropriate normalization through the Hadamard test [2—4].

3.5.Related works
As a final part of the preliminary section, we review related works on computational complexity of commuting
quantum circuits and Ising partition functions.

In [50], they have investigated rather general commuting quantum circuits of d-level (qudit) systems. Not
only the diagonal gates in the computational basis, but also general commuting gates are considered. Specifically
they showed that a single qudit output (or at most polylogarithmic number of qudits) of 2-local commuting
quantum circuits is strongly simulatable with an exponential accuracy. Moreover, a single qudit output of
3-local commuting quantum circuits cannot be strongly simulated, unless every problem in #P hasa
polynomial-time classical algorithm. The former result and intractability of IQP with two-local commuting
gates imply that a polynomial size of the output is essential for commuting quantum circuits to be hard for a
weak classical simulation. Recently, hardness of IQP is improved from sampling with a constant multiplicative
error to that with a constant /; additive error, where the relation between IQP and Ising partition functions are
utilized [51].

In [52], it has been shown that an approximated random state, t-design, can be generated by diagonal (i.e.,
commuting) quantum circuits [53, 54] (see also a review [52]). Since random states are shown to be useful in
various quantum information tasks [55—57], they are one of the most important applications of commuting
quantum circuits.

For the ferromagnetic Ising models with a constant magnetic field on arbitrary graphs, there exists a fully
polynomial-time randomized approximation scheme (FPRAS) [58], which approximates the partition function
Zising of the size n with a multiplicative error ¢ = 1 + ¢ ina poly(n, 1/¢) time. However, under the random
magnetic fields, approximation of ferromagnetic Ising partition functions below a certain critical temperature
equivalent, under an approximation-preserving reduction, to #BIS, which is a counting problem of the
number of independent sets of a bipartite graph [59]. The counting problem #BIS is conjectured to lie in-
between FPRAS and #SAT under an approximation-preserving reduction. Here #SAT indicates a counting
problem of the number of satisfying configurations, and does not have an efficient (polynomial) multiplicative
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approximation unless NP = RP [60]. Moreover, it has been shown that a multiplicative approximation of
antiferromagnetic Ising partition functions (below a certain threshold temperature) on d-regular graphs (d > 3)
are NP-hard [61]. All these earlier works have done on the Ising models with real coupling strengths and fields. A
comprehensive classification of complexity of multiplicative approximation of complex-valued Ising partition
functions (including our results) has been provided in [62].

In [63], a quantum algorithm to prepare quantum states encoding the thermal states of Ising models has
been proposed for a restricted type of lattice structures. In [64], it has been shown that calculations of partition
functions of +] random-bond Ising models are equivalent to quadratically signed weight enumerators, with an
oracle for which classical probabilistic computation is polynomially equivalent to quantum computation [65].
Based on this mapping, certain quantum circuits corresponding to Ising models on planar lattices without
magnetic fields have been shown to be efficiently simulatable by a classical computer in the strong sense [66].

Quantum algorithms to approximate the Ising partition functions in a complex parameter region have been
studied so far using a transfer matrix method [5, 671, an overlap mapping [7, 68—70], and a path integral method
[6]. Specifically, certain sets of instances are shown to be BQP-complete, which means that such algorithms can
actually do a nontrivial task, which would be intractable on a classical computer. In [6], a quantum algorithm for
an additive approximation of real Ising partition functions on square lattices has been proposed by using an
analytic continuation (see also a Fourier sampling scheme for spin models for estimating free energy [71]). In [7],
another quantum algorithm for an additive approximation of square-lattice Ising partition functions with
completely general parameters including real physical ones has been constructed based on a linear operator
simulation by a unitary circuit with ancilla qubits (see also a linear operator simulation for an additive
approximation of Tutte polynomials [4]). Specifically, in this case, the achievable approximation scale was also
calculated explicitly. The Ising partition functions on square lattices with magnetic fields are know to be
universal in the sense that the partition function of any other classical spin model can be mapped into an Ising
partition function by choosing a certain parameter [69]. Furthermore, the 2D Ising models are know to be
universal, which means that we can embed an arbitrary classical spin models to its low energy sector [72]. Thus
the above quantum algorithm allows approximation of an arbitrary classical spin partition function with a
certain approximation scale.

4. Bridging IQP and Ising partition functions

In this section, we establish a bridge between IQP and Ising partition functions. In section 4.1, we will first show
that the joint probability distribution of the output of an IQP circuit associated with a graph G s given by
normalized squared norm of the partition function of the Ising model defined by the graph G. Since there are
exponentially many instances of the measurement outcomes, a straightforward sampling using the joint
probability distributions does not work efficiently. To resolve this, we simulate IQP in a recursive way according
to the conditional distribution on the previous measurement outcomes by using the Bayes theorem. To this end,
we need the marginal distributions with respect to the measured qubits. In section 4.2 we will establish a
relationship between the marginal distribution with respect to a set M of the measured qubits and the Ising
partition function defined on another graph Gy, which is systematically constructed from the graph G and the
set M.

4.1. Joint probability distribution

We define an Ising model, which may include multibody interactions, according to the bipartite

graph G = (V4 U Up, E) and weights {6;}. The Ising model consists of the sites associated with the vertices

v; € V, and multibody interactions represented by the vertices u; € Up. The spins engaged in the jth interaction
and its coupling constant are given by \/,, (or equivalently S) and 6}, respectively.

Definition 6 (Multibody Ising model with random i7 /2 magnetic fields). For a given bipartite
graph G = (V4 U Us, E) and weights {6;} defined on the vertices in U, a Hamiltonian of an Ising model with
random i /2 magnetic fields is defined by

1— o, .
H({s:}, (0}, G) = — Y imsi— — S0 [T oul 4)

Vv;,EVy 2 LIjE Up V,'E./\/;,j

where 0, € {+1, —1} isan Ising variable defined on each vertex v; € Vj. The partition function of the Ising
model is defined by
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Z({s}, {6}, G) =

S e H sk ()6,

{ Uv,}
where >,

, means the summation over all configuration {o,,}.

We should note that, in addition to the interactions defined by the graph and weights, random ir/2
magnetic fields are also introduced according to the bit string {s,,}. This corresponds to the measurement
outcome of IQP as seen below. Furthermore, in section 5, these random i7/2 magnetic fields will be successfully
removed for a certain class of Ising models by renormalizing them into the coupling constants {6;}.

The probability distribution of IQP associated with G = (V4 U Up, E) and weights {6;} is now shown to be
equivalent to the normalized squared norm of the partition function of Ising model defined by the graph G and
weights {6;} as follows:

Theorem 1 (QP and Ising partition functions). QP associated with the graph G = (V4 \J Us, E) and weights
{0;} is equivalent to the sampling problem according to the normalized squared norm of an Ising partition function
defined by the graph G and weights {0;}:
Pigp({si}1{6;}, {Si}) = 21YlPypiqr ({my,}, {my}1{0;}, G)
=272 2({si), {0}, G P

Proof. We reformulate the left-hand side of equation (1) using the overlap mapping developed by Van den Nest
etal [69,70]:

Prop({si} [{0;}, {S;})

- ZIUBlpMBIQP({mvi}’ {muj} | {9]'}) G)
2

-2 (@ o) @ o) I o

VeV

u)EUB

2
i " 8.

_ iUl ( ® <0| + els7T<1|] ® <0|elj + <1|€ 10 2=1Val/2 Z'{(—J—w” ® @ Oy,

ASA7 ﬁ u;j€ Up ﬁ {5y} uj€Up | iENy

2
= 21Usl | 271Usl/2= VAl N “exp| >~ ims;zy, [exp| D —i|26;| @ o.,| — 6,
{5y} viEVy u;€ Uy V€N,
2

— 2-2|V4l Ze—H({Si}»W]} G)

{oi}
=272 Z({si}, {65}, GBI, (5)

where we define a binary variable 5,, = (1 — ¢,)/2,and >° 2 indicates a summation over all binary strings.
From the second to the third lines, we used the fact that

G = T TI Au@ |14 00010

u;j€ Up V,'E/\f,,,j

=1 11 H) [T TI AwuCO|> )

u;€ Up u;j€ Up V,‘G./\f {Uv}

|0 ®|UB|

uje Up (5y;) u;€ Up

= H Hu])ZHUv, ®|@v,6/\/ v,)-

Equation (5) shows that IQP is equivalent to the sampling problem according to the probabilities
proportional to the squared norm of the partition functions of an Ising model with imaginary coupling
constants. Note that the measurement outcome {s;} corresponds to the random i /2 magnetic fields.

The present sampling problem is not related directly to what is well studied in the fields of statistical physics,
such as the Metropolis sampling according to the Boltzmann distribution. However, as we will see below, the
relation between |QP and Ising partition functions leads us to several interesting results about complexity of
IQP, since calculation of the Ising partition functions are well studied in both fields of statistical physics and
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Figure 3. (a) The graph state |G) associated with the graph G. The gray and white circles indicate qubits associated with v; € V, and
uj € Uy, respectively. (b) The subgraph state | Gy) and its copy | Gy) are merged via the qubits |+ )/?M45! Jocated on the boundary. The
merged graph is denoted by Gy;.

computer science. It was shown in [32] that exact calculation of partition functions of the Ising models with real
coupling strengths and magnetic fields is NP-hard even on the planar graphs. Furthermore, in general, exact
calculation of partition functions of two-body Ising models with magnetic fields is #P-hard [33]. No
polynomial-time approximation scheme with multiplicative error exists unless NP = RP. While IQP does not
provide the exact values of the partition functions, it is surprising that the sampling according to the partition
functions of many-body Ising models H ({s,,}, {6,,}, G) with imaginary coupling constants, can be done in
IQP, which consists only of commuting gates and seems much weaker than BQP.

Only in the limited cases, the partition function of an Ising model can be calculated efficiently. Such an
example is two-body Ising models on the 2D planar lattices without magnetic fields. In the next section, we show
that certain classes of QP are classically simulatable, at least in the weak sense, by using the fact that the
associated Ising models are exactly solvable. To this end, we need not only the joint distribution of the output of
IQP circuits but also the marginal distributions with respect to measured qubits, in order to simulate the
sampling problem recursively.

4.2. Marginal distribution

Even if we can calculate the probability distribution Piqp ({s;}|{6;}, {S;}) efficiently, it does not directly mean
that the corresponding IQP is classically simulatable, since there are exponentially many varieties of the
measurement outcomes {s;}. An efficient weak classical simulation of IQP requires the marginal distribution
with respect to measured qubits, by which we can simulate IQP recursively. In the following we will establish a
mapping between the marginal distribution with respect to the set M of measured qubits and the partition
function of an Ising model defined on a merged graph G),. The merged graph G, constructed by merging a
subgraph G, corresponding to the measured part of the graph G and its copy Gj (see figure 3). (The detailed
definition of the subgraph Gy, and the merged graph G are given in the proof of the following theorem.)

Theorem 2 (Marginal distribution of IQP). Let M C {1, 2,...,n}and M C {1, 2,...,n} besets of the measured
and unmeasured qubits, respectively (and hence M \U M = {1, 2,...,n}and M N\ M = &). A marginal
distribution with respect to the set M

Pigp({sitiem {0}, {(Si}, M) = > Piop({si} {0}, {Si})
{silient

is related to the Ising partition function defined by the merged graph Gy and weights {6;} U {—6;}.
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Proof. In order to prove this, we consider the corresponding MBIQP. However, it is just for a proof, and hence
we do not need to simulate MBIQP in classical simulation as seen later. Thus without loss of generality, we can
assume that the measurement outcome is subject to m,, = 0 forall u; € Us.

Based on the sets M and M, the sets of measured and unmeasured qubits in V4 is defined as M, and My, i.e.,
M, U My = V4. We define a subgraph Gy (My U Mg, Ey), where Mg C Ugis aset of vertices thatare
connected with any vertices in My, i.e., Mg = {u; € Up|(u), v;) € E, v € My}. Episaset of edges whose two
incident vertices both belong to My U Mp. We denote My U Mp simplyby Mgand (V4 U Up) \ Map by Myp
(see figure 3(a)).

The marginal distribution can be written as measurements on the reduced density matrix on the qubits M p:

Prap({siliem| {0}, {Sj}, M) = (O|Trjg,,[1G) (G[119),

where |0) = Quem,| +; )Qujersl00)> and Tryy,, indicates the partial trace with respect to the unmeasured
qubits Myp.

We define a subset OMyp C Myp as a set of vertices connected with any vertices in M, i.e.,

OMyup = {vi € My|(v;, uj) € E, uj € Mg} (note that OMyug C M,). We refer to the qubits associated with the
vertices in 0Myp as the boundary qubits, since they are the boundary of the measured and unmeasured qubits in
the graph state as shown in figure 3(a).

For the graph state |G), the tracing out with respect to the unmeasured qubits My can be equivalently done
by Zbasis measurements on the boundary qubits and forgetting about the measurement outcomes. This is
because, Z-basis measurements on the boundary qubits separate the measured and unmeasured qubits (see fact
1), and hence the tracing out of the qubits in Myp \aMAB does not have any effect on the measured qubits M.
From this observation we obtain

Trig,[1G) (Gl = 2719l 37 [ II B(w)"’”"]'GM><GM|( 11 B(w)"’”’],

{my;Yontyp \ i€ OMyp Vi€OMag

where {m,, }ou,, is the set of the measurement outcomes on the boundary qubits, and we define a byproduct
operator B(v;) = HquNW My, Zu; (see fact1).

Let us consider a merged graph G that is constructed from the graph G,,and its copy Gy, and the boundary
OM,p. Two copies of graph states, |Gy,) and | Gy, ), are merged via | +)©19M5l as shown in figure 3(b). The vertices
in M, and those in Gy;and Gy, are connected iff there is an edge between them in the original graph G and its
copy G'. The graph state associated with the merged graph G, is written as

Gu) = 1 [ 1 MA@ 1 Av,-,u;(z’]'Gm|+>X'@MAB'|GA4>.

vi€dMup \ u;eN,; | Mp uj'e./\/(,X UMz

Let us consider a projection of | Gys) by |+ )210Masl;

(4[10Masl| Gyg) = 2710Masl ™ l 11 [B(vi>B’(vi>]mv:-]|GM>|GA4>,

{my;} onayp | vi€ OMaup

where B’ (v;) is defined similarly to B (v;) on the graph state | G;,). Let us define

)= Q1+:) & I-bi0)>

v;iEMy ”jEMB

where we should note that the sign of the angle 6,  is flipped. Next we consider a projection by |©) |©’) as
follows:

(O1(+[*1Mul (0| Gr)

— 2~ 10Mul <@|[ IT [B(vi)]mvi]|GM><@/|l I1 [B/(Vi)]mvi]lGI/\/I>

{my;} omap v;€OMyp v,€O0Myp
= (O|Tr1,[1G) (GI11©)
= Pigp ({sitiem!{6;}, {S;}, M). (6)

This indicates that the summation over exponentially many variables for the marginalization is taken simply in
an overlap between the product state and the merged graph state.

On the other hand, the overlap (O] (+|?19Musl (9| Gy,) is also reformulated as an Ising partition function as
done in the proof of theorem 1. Specifically, the interaction patterns are given by the merged graph Gy;. The
coupling strengths are given by two copies of {0}, and { — 9]-},,](E My
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(O (+]®1Masl (O/[| Gr)
= 27 2IMAl=1OMasl =IMsl | Z({s;} pr U {0} vconays U {57 I {0ituemy, U {—0luemy Gm)l,
= 27 2MAI=IOMasl = IMsl | Z({s;3%, {6}, Gu)l, 7

where we defined {s;}* = {s;} » U {0} ,.com,, U {5/} and {0 = (0}y,em, U {—0;},emp- We should note
thats;and s/ take the same value but 6;’s sign is flipped on its copy u]/ € M}, From equations (6) and (7),

Pige ({siliem| {6}, {Sj}, M) = 272IMAI=10Musl | Z({s;7%, (6,FF, Gu)

Thatis, the marginal distribution with respect to the set M of the measured qubits is given by the normalized
squared norm of the partition function of the Ising model defined by the merged graph G,. O

The above theorem also indicates that the marginal distribution is equivalent to the square root of the joint
probability of the IQP circuit associated with the merged graph Gy, weights {0;}* and the measurement
outcomes {s;}*:

Pigp ({sikiem {6}, {Sj}, M) = [Pigp ({si}¥, {6;FF, {Nyu; € Gu}) /2.

This indicates that if the joint probability distributions of the IQP circuits associated with a class of graphs
can be calculated efficiently, and the class of graphs is closed under merging mentioned above, then the marginal
distributions of such a class of IQP circuits can also be calculated efficiently. An example of such a class is planar
graphs, where the merged graph G is also a planar graph with an appropriately chosen measurement order
such that M® is always connected.

Conditioned on the measurement outcome {s;};c5s on the set M, the probability of obtaining the next
measurement outcome s is calculated by using the Bayes rule as

Proe ({sitiemyuxl {0} {Sj}, M\K)
Prop ({sitiem[10;}, {S;}, M)
By denoting the set of all measured qubits after the kth measurements as M® (since there is no order in the

measurements in IQP, we can choose an arbitrary order of measurements for our convenience), we can
reconstruct the joint probability distribution of IQP as follows:

PG {sitiem) =

n
Pigp({si} {6}, {Si) = [T pGil{siliem®),
k=1
where the ixth qubit is measured at step k, i.e., {ir} LU M*~D = M®, If the marginal distribution, that is, the
Ising partition functions defined on G ;® can be calculated efficiently for all M*® for a measurement order, IQP
is classically simulatable at least in the weak sense.

Note that even if we can calculate the marginal distributions for an appropriately chosen measurement
order, it is not sufficient to show strong simulatability in a strict sense. In order to shown strong simulatability,
we have to show that arbitrary marginal distributions can be calculated efficiently. In the next section, we will see
a classically simulatable class based on planarity of the associated Ising models. However, if we choose a wrong
measurement order, the merged graph results in a non-planar graph. In such a case, the marginal distribution is
mapped into a partition function of an Ising model on a non-planar lattice, which is hard to calculate
[32,73, 74]. To clarify this situation, we say almost strongly simulatable if there exists a measurement order, and
all marginal distributions with respect it can be calculated efficiently.

5. Classical simulatable classes of IQP

In this section, we will provide two classes of IQP that are classically simulatable efficiently. One in section 5.1 is
based on the sparsity of the commuting gates. The other in section 5.2 is based on the exact solvability of Ising
models on the 2D planar lattices without magnetic fields [32, 36, 37].

In general, exact calculation of partition functions of Ising models in the presence of magnetic fields is highly
intractable in classical computers even on 2D planar lattice [32, 33]. The Ising models, to which we have mapped
IQP in section 4, include the random i /2 magnetic fields depending on the output {s;}. In both cases, we will
show that if the geometries of the graphs have some properties, we can safely remove the magnetic fields
renormalizing it into the coupling constants {;}.

5.1. Classical simulatability: sparse commuting circuits
Let us definea|V)| x |Up| matrix R, associated with the bipartite graph G = (V4 U Up, E), such that R,’ = 1iff
avertex v; € Vyisin /\/;], otherwise R,/ = 0. We consider a class of bipartite graphs with | V| = |Up|, for which

the row vectors of R are linearly independent in Z/%s!. We call such a bipartite graph as an independent-bipartite
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(a) independent and |V4/=|Us| (b) not independent (c) independent and |V4[>|Us|
Ui u2 ui uz ui
V2 V3 V2 V3 V2 V3
us us us

1 Bl 1

2 D; D3 f— 2 H. D3

3 | 3 { |
Figure 4. Bipartite graph states (top) and associated commuting circuits (bottom). The white and gray shaded circles indicate qubits in
Ugpand V,, respectively. (a) A graph that is independent and | V| = |Uj|. (b) A graph that is not independent. (c) A graph that is
independent but |V,| > |Ug|.

graph (IBG). Examples of the IBGs is depicted in figure 4(a). Later we will weaken the condition | V| = |Uj|
to [V4| = |Ug|-

Now we consider the Ising model associated with an IBG. If we consider only computational basis, we can
replace the classical spin variable o with the Pauli Z operator. Therefore, we can rewrite the Ising Hamiltonian
equation (4) as

ﬁmmwmaz—zguhzm—zﬂ ® Z.|.
j

i ViENuj

Then the partition function is given by

Z({sih, (6}, G) = Tr[e AEh101.0),

Our main goal here s to calculate | Z({s;}, {6;}, G)|* exactly. To this end, let us first consider the case s; = 0
for all v;. In this case, there is no magnetic field, and hence we can transform the Hamiltonian into an
interaction-free Ising model by virtue of the properties of the IBGs.

Lemma 4 (Mapping to interaction-free Ising model). For any Ising model associated with an IBG, there exists a
unitary operator W that transforms H ({0}, {0}, G) tointeraction-free Ising Hamiltonian:

WH ({0}, {6}, W' =37i6;Z,,.
j

Proof. Since the column vectors of R are independent, we can transform the matrix R to the identity matrix by
using the Gauss—Jordan elimination method. Since the matrix R defines the graph and the Hamiltonian, the
Gauss—Jordan elimination can be viewed as a transformation of the graph and the corresponding Hamiltonian.
The graph associated with the identity matrix consists of pairs of vertices (v;, u;) connected by edges. Since each
vertex in Ugis always connected only one vertex in V4, the corresponding Ising Hamiltonian is interaction-free.

Each process in the Gauss—Jordan elimination for the matrix R can be implemented on the Hamiltonian by
conjugations of controlled-Not (CNOT) and swapping gate operations. The CNOT gate from the ith to the jth
qubits is equivalent to adding the jth row vector to the ith one on the matrix R. The swapping gate exchanges the
labels {v;} of the vertices. Thus there exists a unitary operator W consisting of swapping and CNOT gates such
that WH ({0}, {0;}, GYW' = 32,i6,Z,,. 0

For example, in the case of the IBG shown in figure 4(a), the set of operators in the Hamiltonian is given by
{(z,2,,2,2,Z,, Z,}. Thiscanbe mapped to { Z,,, Z,,, Z,,} by using the unitary operator
W = S7P A(X)y,,A(X)y,,, where S,*F is the swapping operation between qubits v;and v;.

V2, V3 Vi, Vj
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By using such a W, the partition function can be calculated as

Z({si}, (6}, G) = Tr[e HUsh o))
= Tr[We WHUsHOEHW T
=2 cosb,.

uj

Thus the probability of obtaining {s; = 0} is computed as

Uj

2
Pige({si = 0} {0;}, {S;j}) = [H COSHJ‘] :

Since the joint probability is factorized for each 6;, we can easily calculate its marginal distribution (without
using theorem 2 in this case).

Next we extend the above result to the general measurement outcomes {s;}. This is done by renormalizing
the random im /2 magnetic fields into the coupling constants as follows.

Lemma 5 (Renormalization of i7/2 magnetic fields). For any |QP associated with an IBG, we can find a bit string
{c} such that
Pigp({si}1{0;}) = Piop ({si = 0}1{6;}),
with éj =0+ ¢, /2.
Proof. Let us consider the corresponding MBIQP. From the definition of MBIQP,

PMBIQP({mv,'}) {muj}l{ej}) G)= ® <+mvi| ® <9j,m,4/”G>

VeV ujG Up

>

(ol MIE(my)) @ (0)m,IG)

u}-E Up

where F({m,,}) = @.cv, Z,,". Since the row vectors of R are independent, we can find a vector cy;in Z|2UB |
suchthat m,, = 3°, R,/ ¢, forany {m,,}. By using this vector c,, we obtain the following equality,
Cuj
H (Xuj Ku]- )i = H H Zv,- = F({mv,})
u;j€ Up u;j€ Up V,'E./\/;j
By using this and the fact that K, stabilizes |G), we obtain
2

Pyigr({my,}, {my} {0}, G) =

(+ol*M! @ <0j,muj|[ I XJ?V1]|G>

u;€ Up uje U

2

(+ol™ @ (B JIG)

i€ Us
= Pusigr ({8, = 0}, {my,}|{6;}, G),
whereéj =0+ Cuy / 2. Specifically, if we consider the case m,, = 0, we obtain that
Pigp({si}1{6;}, {S;j}) = 2V!Pymige ({51}, {m., = 0}1{6;}, G)
= 2UslPypiqp ({sy, = 0}, {m,, = 0}|{9j}> G)
= Pige({si = 0}[{0;}, {S;}).

Let us consider the example shown in figure 4(a) again. For instance, if {s,,} = {0, 0, 1},
F({0,0,1})=Z,,and{c, = 1, ¢,, = 0, ¢,, = 1}. By multiplying the stabilizer operators of the graph state
with respect to the 4th and 6th vertices, we obtain another stabilizer operator
X2y, 2,) Xy 20, 2, Z,,) = Xy, Xy, Z,,. Thus the action of F ({0, 0, 1})is equivalent to that of X4 X¢, which
rotates the angles ¢, and 0,, by /2.

By combining lemmas 4 and 5, we can show classical simulatability of IQP associated with IBGs.
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Theorem 3 (Classical simulatability: sparse circuits). IQP associated with an IBG is classically simulatable.

Proof. From lemmas 4 and 5, we can calculate Piqp ({s;}|{6;}) exactly for an IBG including its arbitrary marginal
distributions. Thus such a class of IQP is classically simulatable for arbitrary angles { ¢} in the strong sense. ~ [J

Finally, we slightly weaken the condition, |U| = |V,|. Evenif |Up| < | V4| (as shown in figure 4(c)), there
exist Wsuch that transforms the many-body Ising Hamiltonian to interaction-free Ising Hamiltonian as long as
the column vectors of R are independent. In this case, the existence of ¢, for all {m,,} is not guaranteed, and
hence we have to find another way to deal with this situation.

To settle this, we add ancilla vertices u; € Up to the set Ugin such a way that R, (uj € U U Up) satisfies
|Val = |Us U Up/|(The 5th qubitin figure 4(a) can be viewed as the ancilla qubit for the non-full rank graph in
figure 4(c)). Due to theorem 3, we can exactly calculate the probability for the slightly enlarged problem,

Prgp ({s;}[{0;} U {6}). Then, the probability Piqp ({s;}|{6;}), with which we want to sample {s;}, canbe
obtained by considering a specific case 6y = 0forall u; € Up,i.e.,

Pigp({si} [{0;} U {6y = 0}) = Pigp({si} [{0;}).

A representative example of classically simulatable IQP circuits are depicted in figures 4(a) and (c). If we restrict
ourselves into two-body Ising models (i.e., |Sj| = 2), the meaning of independence becomes clear; independence
means that the lattice does not contain any loop, such as Ising models on one-dimensional chain or tree graphs.
Thus IQP with two-qubit commuting gates whose interaction geometry does not contain any loop can be
efficiently simulated in the strong sense. In order to avoid the present class of classically simulatable IQP, the
IQP circuits that consist of at least # (=|V,|) commuting gates acting on different subsets {S;} of qubits are
sufficient.

5.2. Classical simulatability: planar-IQP
Classical simulatability in the previous case is based on the sparsity of the commuting gates, where at most only
n — 1 commuting gates are included. In such a case we can calculate the partition functions without using
theorem 2. Next we will provide another classically simulatable class of IQP, that includes commuting gates
much more than n. Specifically, we will show below that IQP with two-qubit commuting gates acting on
nearest-neighbor two qubits on the 2D planar graphs, which we call planar-1QP, is classically simulatable almost
in the strong sense. That is, the probability distribution of the output and its marginal distribution for an
appropriately chosen measurement order can be calculated efficiently. To this end, we first show, by using
properties of the graph states, that for two-body Ising models we can always remove the random i7/2 magnetic
fields by appropriately renormalizing their effects into coupling constants {;}. This allows us to map planar-
IQP to two-body Ising models without magnetic fields. Then we utilize theorem 2 and exact solvability of two-
body Ising models on planar lattices to construct an efficient classical simulation of IQP.

Consider a planar bipartite graph G with |S;| = 2, that s, every vertex u; € Up are connected with just two
vertices v; € Vj. The weights {0;} are arbitrary. For simplicity, we assume that G is connected. Let us consider
properties of the graph state associated with such a planar bipartite graph G.

Lemma 6 (Property of graph states 1). For any connected bipartite graph G with |S;| = 2 for allj, the associated
graph state|G) is subject to the following property:

[ I1 <+mvi|]|G> =0

forany {m,} such that @,,cv, m,, = 1. Here the addition is taken modulo two.

Proof. The bipartite graph state is stabilized by

I [x M z|- 11

VeV, qu./\/;,i v;eVy
and hence (I], .y, X,)|G) = |G). By using this, we obtain
( H <+mvi|)|G> = [ H <+mv,.|][ H X, |1G) = [ H <+mv,-|](1)®"i€VAmvi|G>-
;e Vy A ;€ Vy v,EVy
Thusif Py,cv, my, = 1,then (], cy, (4, DIG) = 0. 0
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(a) planer lattice (b) graph state (c) a path between two vertices

(d) 1QP circuit

Figure 5. (a) A planar lattice. (b) An associated bipartite graph state, where gray and white circles denote qubits in V4 and Us,
respectively. (c) A path between a pair of qubits in V4. (d) The corresponding commuting circuit.

Thus we only consider the case ,.c v, m,, = 0, thatis, the number of vertices with m,, = 1is even. In such
a case, we can show that modifying the coupling constants {¢;} appropriately as follows can renormalize ir/2
magnetic fields.

Lemma 7 (Property of graph states 2). For any QP associated with a connected bipartite graph G with |S;| = 2 for
allj, by appropriately choosing { 9]-},

Pige({si} 116}, {S;}) = Pige({si = 0} {B}}, {Sj}),
where {s; = 0} means thats; = 0 for alli. Equivalently, for the corresponding Ising models, we have
H({si}, {6}, G) = H({s; = 0}, {6}, G),
that is, the random irr /2 magnetic fields can be renormalized into the coupling constants { 6;}.

Proof. Consider the graph state |G). Due to lemma 6, the number of §; = 1is always even. The graph is
connected. Thus we can always make pairs of vertices v; € V4 of m,, = 1. Apparently this can be done in
polynomial-time, since arbitrary paring is allowed. Let us denote such a pair as (v ~ v/) and a set of vertices on
a path (arbitrarily) connecting them as path (vy ~ vy/). The graph state is stabilized by

H Kuj = ka[ H Xuj]va

uj€path(vg~vp) () Up uj€ path(vi~vi) | Up

(see figures 5(b) and (c)). By using this fact, we can obtain

[® <+mv,,|)[ ® <e,»,mu,.|]|c>

VASS Va u]-E Up

[ 02 <+mv,.l][ b2 <9j,mu,.l] ZVk[ I1 Xuj]zw |G)

ujepath (vi~vp) U Up

:[ X <+mvi@b‘vi,1,k@6vi,vk,|][ (%9 <9j,muj <) 6uj,uj,|]|G>-

vieVy uj€ U ujr€ path(vg~ i)

By doing this repeatedly for all pairs of m,, = 1, i.e.,a perfect matching of 1, = 1vertices, we can transform all
m,, = 1to m,, = 0.Let us define an arbitrary perfect matching M of vertices of m,, = 1andaset path(M) of
paths of the matching M. By denoting the addition modulo two over us on all these paths by ., < path (1), the
renormalized coupling constant is given by
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9]' = 9] + [ @ 6uj’uj,]71'/2.

uj € path(M)

Then we obtain

[ X <+mv,-|][ X <9j,muj|]|G> = <+0|®|VA|[ ® <9j,muj|]|G>.

v,EV) uj€ Up u;€ Up
This leads that

Pigp (st {05}, {Si}) = 2% Pumiqe (), (o, = 0}1{63}, G)
= 2UlPygiqr ({3, = 0, {my, = 0}1{0}}, G)
= Pigp({si = 0} {0}, {S;D).

O

Note that in the proofs of the properties of graph states with |S;| = 2, we did not use the planeness of the
graph. Thus lemmas 6 and 7 hold even for nonplanar graphs as long as |Sj| = 2 for all j. Accordingly, we can
always remove the random i /2 magnetic fields of arbitrary two-body Ising models by appropriately
renormalizing them into the two-body coupling constants.

Interestingly, these properties of the graph states are closely related to the properties of anyonic excitations
on surface codes with a smooth boundary [75]. On the graph state with |S;| = 2 for all j, if one project the qubits
in V, by |+)®!"4l, we obtain the surface code state defined on a lattice £, where vertex and edge corresponds to
vertices in V4 and Up of G respectively, and a qubit is assigned on each edge. This can be confirmed as follows.
The post-measurement state is stabilized by ]_[ujE X, Z,; = Ay, forallv; Furthermore, for all faces fof the lattice
L, HujE of Ky = lcor Xuy = By stabilizes the post-measurement state, where Of is the set of the edges that are
boundary of the face f. These two types operators are called star and plaquette operators in [75]. The post-
measurement state or equivalently the surface code state is the ground state of the Hamiltonian, so-called
Kitaev’s toric code Hamiltonian,

H= -]y A —]Y By
i !

A projection by | —),, results in the eigenvalue —1 of the star operator at vertex v;, which corresponds to the
anyonic excitation in the Kitaev model. Then lemma 6 indicates that the parity of anyonic excitations is always
even. They are created and annihilated in pairs. Lemma 7 corresponds a way to annihilate the pairs of the anyonic
excitations. The trajectory of anyonic excitations in the annihilation process corresponds to path (M).

Now we are ready to show that classical simulatability of IQP consisting of 2D nearest-neighbor two-qubit
commuting gates.

Theorem 4 (Classical simulatability: planar-IQP). Planer-1QP consisting of two-qubit commuting gates acting on
nearest-neighbor qubits on the 2D planar graphs is classically simulatable almost in the strong sense.

Proof. According to theorem 1, the joint probability distribution of planar-1QP can be calculated from a two-
body Ising partition function on a planar lattice. Since the graph G is a planar bipartite graph, we can easily find
an order of measurements such that G is also planar at any measurement step k. (Any order of measurements
such that the subgraph G ),;®» becomes a connected graph for all k can be utilized.) Due to theorem 2, the marginal
distributions are also given as Ising partition functions on planar lattices. Furthermore, in the merged graph, the
vertices u; € M, 0 U M"¥ are connected with just two vertices, i.e., |NV,| = 2. For such Ising models, by using
lemmas 6 and 7, the random magnetic i /2 fields can be renormalized into the coupling constants {0} — {éj}.
Thus all marginal distributions can be calculated from the two-body Ising partition functions on planar lattices
without magnetic fields. On the other hand, it is well known that the partition function of two-body Ising models
on planar lattices without magnetic fields can be calculated efficiently by expressing them as the Pfaffians
[32,36,37].

Thus we conclude that IQP of this class can be simulated efficiently almost in the strong sense, which is
sufficient for an efficient weak simulation with a recursive method. O

Note that a similar argument is also made in [76] by considering classical simulatability of MBQC on the
planar surface codes [75]. Indeed, as mentioned before, if we apply the projection by |+)®!"4l on the bipartite
planar graph state with |Sj| = 2, we obtain an unnormalized planar surface code state consisting of the qubits on
Up. The effect of m,, = 1(i.e., the projection by |+;)) can be renormalized into the coupling constants
{0} — {@}, where an arbitrary perfect matching is chosen as shown in lemma 7. Thus we may construct an
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alternative proof of theorem 4 without using theorem 2. However, theorem 2, employing the properties of the
graph states, is much straightforward and simple for our purpose. Furthermore, theorem 2 is valid not only for
the case with 1S;] = 2, but also the general cases, which cannot be regarded as MBQC on the planar surface
codes.

While we have shown planar-1QP is almost strongly simulatable, it seems not to be strongly simulatable in
the strict sense. Suppose that we choose a measurement order { M®} such that any subgraph GM* consists of
multiple disjoint subgraphs. In such a case, the merged graph becomes a non-planar graph of a higher genus.
The Ising partition functions on lattices of a higher genus are hard to calculate in general [32, 73, 74]. There
seems to be an intermediate class of classical simulation, which we named almost strongly simulatable, between
strongly simulatable (in the strict sense) and weakly simulatable.

The Pfaffian is the square root of the determinant, and hence the probability distribution of planar-1QP is
given by the determinant of an appropriately defined complex matrix. This result contrasts with
BOSONSAMPLING related with the permanent of a complex matrix. The exact solvability with the determinant
(Pfaffian) naturally reminds us free-fermionic models, which have been also studied as matchgates [77-81].
Since a determinant can be mapped into a probability amplitude of a free-fermionic system, the classically
simulatable class of IQP can be regarded as FERMIONSAMPLING discussed in [31]. This suggests that the
sampling problems in physics can be classified in a unified way as sampling problems of elementary particles.

Important implications of theorem 4 are twofold. One is that planar-1QP can generate highly entangled state
but its output is classically simulatable almost in the strong sense. This is also the case for the Clifford circuits and
match gates, which generate genuinely entangled states but are classically simulatable [43, 77-80]. Secondary, if
single-qubit rotations are added to planer-1QP, it becomes universal-under-postselection, whose weak
simulation is intractable unless the PH collapses to the third level. Thus single-qubit rotations take a quite
important rule for IQP to be classically intractable. Indeed, single-qubit rotations make a drastic change of
computational complexity from almost strongly simulatable to not simulatable even in the weak sense.

We would like to note that a similar result is also obtained in a rather different situation [19]. He showed that
Toffoli-Diagonal circuits, which include quantum Fourier transformation for Shor’s factorization algorithm,
can be efficiently simulated if there is no basis change at the final round before the the computational basis
measurements. Thus single-qubit rotations also play a very important role for the Toffoli-Diagonal circuits to be
classically intractable.

Another consequence of theorem 4 lies in the context of experimental verification of quantum benefits.
When we utilize IQP for the purpose of experimental verification of quantum benefits, we have to avoid planar-
IQP, since a malicious quantum device can cheat experimentalists by classically sampling the results instead of
implementing the IQP circuit. At the same time, the existence of efficient classical simulation for planar-1QP
implies that checking the correctness of experiments of this class is much easier. Thus when experimentalists
realize IQP, they should, at least, try to implement planar-IQP, since its correctness can be easily checked. It
might be possible to efficiently ensure, under a plausible assumption, that two-qubit commuting gates are
implemented appropriately, since experimental devices are usually well known and not so malicious. Hopefully,
classical intractability of quantum devices may be verified by an efficient experimental verification of planar-
IQP combined with other efficient witness or plausible assumptions [82]. Moreover, planar commuting circuits
can generate an interesting class of entangled states, called weighted graph states [35]. The constructed classical
simulation would be useful to check an experimental preparation of such states efficiently.

6. Hardness of approximating Ising partition functions

In this section, we utilize the established relationship between IQP and Ising partition functions in an opposite
direction; by considering universal-under-postselection instances of IQP, we show that a multiplicative
approximation of Ising partition functions with almost all imaginary coupling constants is #P-hard even on
planar lattices with abounded degree. Note that this argument based on universality-under-postselection and
post-BQP = PP have been already utilized to show #P-hardness of approximating the permanent [17] and the
Jones polynomial [40].

Theorem 5 (Hardness of approximating imaginary Ising partition functions). A multiplicative approximation
of Ising partition functions with almost all imaginary coupling constants is #P-hard even on planar lattices with a
bounded degree. Thus if there exists a fully polynomial-time classical approximation scheme, the PH collapses
completely.

Proof. We consider IQP with a homogeneous rotational angle 6. As shown in [38], IQP associated with a
bounded-degree planar graph with [S;| < 2 is universal-under-postselection when the homogeneous rotational
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angle is given by § = /8. Thus a multiplicative approximation of the Ising partition functions with the
homogeneous coupling constant i# = im/8 is #P-hard due to theorem 1 and lemma 3. The same result holds
notonly i# = ir/8 butalso i# = i(2] + 1)7/(8m) for integers land m.

Suppose the homogeneous coupling is given by an irrational angle i.e., § = 2vr with v € [0, 1) beingan
irrational number. Let 1 be an integer. Since 2mym (mod 27) is distributed in a uniform fashion, we can find an
approximation of 7/8 with an additive error e with some integer m = O(1/¢€) [43]. Accordingly the
commuting gates D 2vm, S§)" = D (2mum, §;)issufficiently close to the rotation D (7 /8, S;) in the sense of an
appropriately defined distance such as the diamond norm [83]. In the present case, the erroneous rotation
D(m/8 + ¢, §;)is unitary, and hence the diamond norm is equivalent to the square of the operator norm, which
is given by

ID(7/8, SHII — D (e, SPII* = |II = D(e, SH|I> = 2(1 — cose) = O(e?).

Ifa set of instances of IQP is universal-under-postselection, post-IQP can simulate universal fault-tolerant
quantum computation. If the error e is sufficiently smaller than the threshold value of fault-tolerant quantum
computation [84-86], we can reliably simulate universal quantum computation (i.e., BQP) and moreover PP
with the help of postselection. (See [82, 87] for an application of the fault-tolerance theory to the postselection
argument, where it is shown that if the amount of the error is sufficiently small, we can solve a PP-complete
problem under postselection.) Thus IQP with almost all rotational angles is universal-under-postselection. This
factand lemma 3 lead that a multiplicative approximation of the Ising partition functions is #P-hard for almost
all imaginary coupling constants even on planar lattices with a bounded degree. O

The above result indicates that almost all imaginary Ising partition functions are substantially hard to
calculate even in the approximated case with a multiplicative error. This result contrasts with the existence of a
FPRAS in the ferromagnetic cases with magnetic fields shown by Jerrum and Sinclair [33] and antiferromagnetic
cases on a sort of lattices shown by Sinclair, Srivastava, and Thurley [88]. In these cases, an exact calculation is
#P-hard but its approximation with a multiplicative error is easy. On the other hand, as noted in lemma 3, #P-
hardness associated with post-BQP = PP theorem is also holds in the approximated case automatically.

With the random magnetic fields, approximation of ferromagnetic Ising partition functions below a certain
critical temperature belongs, under an approximation-preserving reduction, to a class #BIS, which is defined as
a counting problem of the number of independent sets of a bipartite graph [59]. Moreover, it has been shown
that a multiplicative approximation of antiferromagnetic Ising partition functions on d-regular graphs (d > 3)
are NP-hard [61]. Compared with the complexity of these real Ising partition functions, the imaginary Ising
partition functions seem to be much more intractable.

This result also contrasts with the recent studies on quantum computational complexity of Ising partition
functions with imaginary coupling constants [2—5, 7, 67]. These quantum algorithms calculate the Ising
partition functions or, more generally, Jones or Tutte polynomials with additive error € in polynomial time of

1/€:
|Z — Zypl < €A,

where Z and Z,;, are true and approximated values respectively, and A is a certain algorithmic scale.
Furthermore, it has been shown that such an additive approximation is as powerful as solving BQP-complete
problems (i.e., BQP-hard). This implies that these quantum algorithms do a nontrivial task that would be
intractable on a classical computer. However, these quantum algorithms seem not to achieve an efficient
multiplicative approximation, since it is #P-hard as shown above.

7. Conclusion and discussion

We have investigated |QP by relating it with computational complexity of Ising partition functions with
imaginary coupling constants and magnetic fields. We found classes of IQP that are classically simulatable at
least in the weak sense (and almost in the strong sense). Specifically, the IQP circuits consisting only of 2D
nearest-neighbor two-qubit commuting gates, namely planar-1QP, are classically simulatable. However, if
single-qubit rotations are allowed, planar-IQP becomes universal-under-postselection, which are as powerful,
with the help of postselection, as PP. Thus single-qubit rotations make a drastic change of the IQP circuits from
almost strongly simulatable to not simulatable even in the weak sense, which stems from hardness of the Ising
models under magnetic fields.

The classical simulatability of planar-1QP stems from the exact solvability of Ising models on planar lattices
without magnetic fields. Both classical computational complexity of Ising models on nonplanar lattices [32, 73]
and quantum computation complexity of MBQC on nonplanar surface codes [74] have been studied already.
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While we did not addressed here, computational complexity of the |QP circuits consisting of two-qubit
commuting gates with a nonplanar geometry is an intriguing future topic.

By considering strong simulation of IQP, we further explored hardness of a multiplicative approximation of
the Ising partition functions. We have shown that a multiplicative approximation of Ising partition functions
with almost all imaginary coupling constants is #P-hard even on planar lattices with a bounded-degree.

The results are relevant for the Ising models with imaginary parameters, which complements to the existing
complexity results on those model with real parameters [32, 33, 62, 72]. The Ising models with real parameters
are of prime importance in both computer science and physics. It would be intriguing to extrapolate the present
results to the real parameters by using the correspondence between imaginary and real Ising partition functions
shown in [7] (corollary 1), which allows us to compare preexisting classical complexity results with
quantum one.
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Appendix A. Proofs of facts on the graph states
A.1.Proofoffact 1

Proof. We observe the effect of the measurement on the stabilizer operator K;. If i = k nor i = N, the
measurement does not make any effect on a stabilizer K, and hence the post-measurement state is stabilized by
suchaKy. If i = k, K;anticommutes with Z; and hence does not stabilize the post-measurement state anymore.
Instead, (—1)" Z; stabilizes the post-measurement state |#1; ), where my = 0, 1is the measurement outcome.
Ifi € N, we define a new stabilizer operator K/ = Z; K; such that Ky does not contain Z;. The post-
measurement state is stabilized by (—1)" K. Thus the graph state with the byproduct operator, B/*|G’), is the
post-measurement state. (Note that B anticommutes with K!s for all ibut commutes with Kjs with i = k and

igN) O
A.2.Proof of fact 2

Proof. By using the fact that

IG) = | TI Axj@ |l + kIG\K),
JEM
we can calculate the projection as follows:

(Ok,mlilG) = <0k,mk|k[ I A(Z)kj]l + %G\ k)

jEM

= <+|kei(9k+mk”/2)Zka( I A(Z)kj]|+>k |G\ k)
jEN

cos(Ox + mym/2)I + isin(0; + mk7r/2)[ H Z]-] |G\k>/\/5
jeM

=exp|i(fx + mk7r/2)[ I ZJ-] |G\k>/«/5.

jEM

0.

References

[1] Shor P W 1994 Algorithms for quantum computation: discrete logarithms and factoring Proc. 35th Annual Symp. on Foundations of
Computer Science, FOCS 94 (Washington, DC: IEEE Computer Society) pp 12434

22


https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

10P Publishing

NewJ. Phys. 19 (2017) 033003 K Fujiiand T Morimae

[2] Aharonov D, Jones V and Landau Z 2009 A polynomial quantum algorithm for approximating the Jones polynomial Algorithmica 55
395421
[3] Aharonov D and Arad 12006 The BQP-hardness of approximating the Jones polynomial arXiv:quant-ph/0605181
[4] Aharonov D, AradI, Eban E and Landau Z 2007 Polynomial quantum algorithms for additive approximations of the Potts model and
other points of the Tutte plane arXiv:quant-ph/0702008
[5] Delas Cuevas G, Diir W, van den Nest M and Martin-Delgado M 2011 Quantum algorithms for classical lattice models New J. Phys. 13
093021
[6] Iblisdir S, Cirio M, Boada O and Brennen G 2014 Low depth quantum circuits for ising models Ann. Phys., NY 340 205-51
[7] Matsuo A, Fujii K and Imoto N 2014 Quantum algorithm for an additive approximation of ising partition functions Phys. Rev. A 90
022304
[8] Bernstein E and Vazirani U 1993 Quantum complexity theory Proc. 25th Annual ACM Symp. on Theory of Computing (New York:
ACM) pp 11-20
[9] Arora S and Barak B 2009 Computational Complexity: A Modern Approach 1stedn (New York: Cambridge University Press)
[10] Papadimitriou C H 1994 Computational Complexity (Reading, MA: Addison-Wesley)
[11] Aaronson S2010 BQP and the polynomial hierarchy Proc. 42nd ACM Symp. Theory of Computing, STOC’10 (New York: ACM)
pp 141-50
[12] Turing A M 1936 On computable numbers, with an application to the Entscheidungsproblem Proc. London Math. Soc. 42 230-65
[13] Church A 1932 A set of postulates for the foundation of logic Ann. Math. 33 346—66
[14] Preskill ] 2012 Quantum computing and the entanglement frontier arXiv:1203.5813
[15] Aaronson Sand Arkhipov A 2011 The computational complexity of linear optics Proc. 43rd Annual ACM Symp. Theory of Computing,
STOC’11 (New York: ACM) pp 333—42
[16] Valiant L G 1979 The complexity of computing the permanent Theor. Comput. Sci. 8 189-201
[17] Aaronson S2011 A linear-optical proof that the permanent is# p-hard Proc. R. Soc. A 467 3393-405
[18] Toda S 1991 PP is as hard as the polynomial-time hierarchy SIAM J. Comput. 20 865-77
[19] van den Nest M 2010 Classical simulation of quantum computation, the Gottesman—Knill theorem, and slightly beyond Quant. Inf.
Comp. 100258-71
[20] JozsaRand van den Nest M 2013 Classical simulation complexity of extended Clifford circuits arXiv:1305.6190
[21] Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C and White A G 2013 Photonic boson sampling in a tunable
circuit Science 339 794-8
[22] Spring] B etal 2013 Boson sampling on a photonic chip Science 339 798—801
[23] Tillmann M, Daki¢ B, Heilmann R, Nolte S, Szameit A and Walther P 2013 Experimental boson sampling Nat. Photon. 7 540—4
[24] CrespiA, Osellame R, Ramponi R, Brod D], Galvao E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P and Sciarrino F 2013 Integrated
multimode interferometers with arbitrary designs for photonic boson sampling Nat. Photon. 7 545-9
[25] Carolan]etal 2014 On the experimental verification of quantum complexity in linear optics Nat. Photon. 8 621-6
[26] Spagnolo N et al 2014 Experimental validation of photonic boson sampling Nat. Photon. 8 615-20
[27] Bentivegna M et al 2015 Experimental scattershot boson sampling Sci. Adv. 1 1400255
[28] Carolan] etal 2015 Universal linear optics Science 349 711-6
[29] Shepherd D and Bremner M ] 2009 Temporally unstructured quantum computation Proc. R. Soc. A 465 1413-39
[30] Aaronson S 2005 Quantum computing, postselection, and probabilistic polynomial-time Proc. R. Soc. A 461 347382
[31] Aaronson Sand Arkhipov A 2013 Bosonsampling is far from uniform arXiv:1309.7460
[32] BarahonaF 1982 On the computational complexity of Ising spin glass models J. Phy. A: Math. Gen. 15 3241
[33] Jerrum M and Sinclair A 1993 Polynomial-time approximation algorithms for the ising model SIAM J. Comput. 22 1087-116
[34] RaussendorfR and Briegel H] 2001 A one-way quantum computer Phys. Rev. Lett. 86 5188-91
[35] Hein M, Diir W, Eisert ], Raussendorf R, van den Nest M and Briegel H 2006 Quantum computers, algorithms and chaos Int. School of
Physics Enrico Fermivol 162
[36] Kasteleyn P W 1961 The statistics of dimers on alattice: I. The number of dimer arrangements on a quadratic lattice Physica 27 1209-25
[37] Fisher M E 1966 On the dimer solution of planar ising models J. Math. Phys. 7 1776
[38] Bremner M J, Jozsa R and Shepherd D J 2011 Classical simulation of commuting quantum computations implies collapse of the
polynomial hierarchy Proc. R. Soc. A 467 45972
[39] Drucker A and de WolfR 2011 Quantum proofs for classical theorems Theory Comput. Libr. Grad. Surv. 2 1-54
[40] Kuperberg G 2009 How hard is it to approximate the Jones polynomial arXiv:0908.0512
[41] Hoban M J, WallmanJ J, Anwar H, Usher N, Raussendorf R and Browne D E 2014 Measurement-based classical computation Phys.
Rev. Lett. 112 140505
[42] Gottesman D 1997 Stabilizer codes and quantum error correction PhD Thesis California Institute of Technology
[43] Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge university press)
[44] Knill E and Laflamme R 1998 Power of one bit of quantum information Phys. Rev. Lett. 81 5672
[45] HanY, Hemaspaandra L A and Thierauf T 1997 Threshold computation and cryptographic security SIAM J. Comput. 26 59-78
[46] Broadbent A, Fitzsimons J and Kashefi E 2009 Universal blind quantum computation 50th Annual IEEE Symp. Foundations of
Computer Science, 2009, FOCS 09 (Piscataway, NJ: IEEE) pp 517-26
[47] Morimae T and Fujii K 2013 Blind quantum computation protocol in which Alice only makes measurements Phys. Rev. A 87 050301
[48] Beigel R, Reingold N and Spielman D 1995 Pp is closed under intersection J. Comput. Syst. Sci. 50 191-202
[49] Knill E, Laflamme R and Milburn GJ 2001 A scheme for efficient quantum computation with linear optics Nature 409 46-52
[50] NiXand vanden Nest M 2013 Commuting quantum circuits: efficient classical simulations versus hardness results Quantum Inf.
Comput. 13 0054-72
[51] Bremner M J, Montanaro A and Shepherd D ] 2016 Average-case complexity versus approximate simulation of commuting quantum
computations Phys. Rev. Lett. 117 080501
[52] NakataY and Murao M 2014 Diagonal quantum circuits: their computational power and applications Eur. Phys. J. Plus 129 152
[53] NakataY and Murao M 2013 Diagonal-unitary 2-design and their implementations by quantum circuits Int. J. Quantum Inf. 11
1350062
[54] NakataY, Koashi M and Murao M 2014 Generating a state t-design by diagonal quantum circuits New J. Phys. 16 053043
[55] Sen P 2005 Random measurement bases, quantum state distinction and applications to the hidden subgroup problem 21st Annual IEEE
Conf. Computational Complexity, 2006, CCC 2006 (Piscataway, NJ: IEEE) p 14

23


https://doi.org/10.1007/s00453-008-9168-0
https://doi.org/10.1007/s00453-008-9168-0
https://doi.org/10.1007/s00453-008-9168-0
https://doi.org/10.1007/s00453-008-9168-0
http://arxiv.org/abs/quant-ph/0605181
http://arxiv.org/abs/quant-ph/0702008
https://doi.org/10.1088/1367-2630/13/9/093021
https://doi.org/10.1088/1367-2630/13/9/093021
https://doi.org/10.1016/j.aop.2013.11.001
https://doi.org/10.1016/j.aop.2013.11.001
https://doi.org/10.1016/j.aop.2013.11.001
https://doi.org/10.1103/PhysRevA.90.022304
https://doi.org/10.1103/PhysRevA.90.022304
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968337
http://arxiv.org/abs/1203.5813
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0220053
https://doi.org/10.1137/0220053
https://doi.org/10.1137/0220053
http://arxiv.org/abs/1305.6190
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2014.152
https://doi.org/10.1038/nphoton.2014.152
https://doi.org/10.1038/nphoton.2014.152
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1126/sciadv.1400255
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1098/rspa.2008.0443
https://doi.org/10.1098/rspa.2008.0443
https://doi.org/10.1098/rspa.2008.0443
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.1098/rspa.2005.1546
http://arxiv.org/abs/1309.7460
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1137/0222066
https://doi.org/10.1137/0222066
https://doi.org/10.1137/0222066
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1063/1.1704825
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.4086/toc.gs.2011.002 
https://doi.org/10.4086/toc.gs.2011.002 
https://doi.org/10.4086/toc.gs.2011.002 
http://arxiv.org/abs/0908.0512
https://doi.org/10.1103/PhysRevLett.112.140505
https://doi.org/10.1103/PhysRevLett.81.5672
https://doi.org/10.1137/S0097539792240467
https://doi.org/10.1137/S0097539792240467
https://doi.org/10.1137/S0097539792240467
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1103/PhysRevA.87.050301
https://doi.org/10.1006/jcss.1995.1017
https://doi.org/10.1006/jcss.1995.1017
https://doi.org/10.1006/jcss.1995.1017
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevLett.117.080501
https://doi.org/10.1140/epjp/i2014-14152-9
https://doi.org/10.1142/S0219749913500627
https://doi.org/10.1142/S0219749913500627
https://doi.org/10.1088/1367-2630/16/5/053043
https://doi.org/10.1109/CCC.2006.37

10P Publishing

NewJ. Phys. 19 (2017) 033003 K Fujiiand T Morimae

[56] Radhakrishnan J, Rotteler M and Sen P 2009 Random measurement bases, quantum state distinction and applications to the hidden
subgroup problem Algorithmica 55 490-516

[57] Dankert C, Cleve R, Emerson J and Livine E 2009 Exact and approximate unitary 2-designs and their application to fidelity estimation
Phys. Rev. A80 012304

[58] Jerrum M and Sinclair A 1993 Polynomial-time approximation algorithms for the ising model SIAM J. Comput. 22 1087-116

[59] GoldbergL A and Jerrum M 2007 The complexity of ferromagnetic ising with local fields Comb. Probab. Comput. 16 43-61

[60] Zuckerman D 1996 On unapproximable versions of np-complete problems SIAM J. Comput. 25 1293-304

[61] Sly A and Sun N 2012 The computational hardness of counting in two-spin models on d-regular graphs 2012 IEEE 53rd Annual Symp.
Foundations of Computer Science FOCS (Piscataway, NJ: IEEE) pp 361-9

[62] GoldbergL A and Guo H 2014 The complexity of approximating complex-valued ising and tutte partition functions arXiv:1409.5627

[63] Lidar D A and Biham O 1997 Simulating ising spin glasses on a quantum computer Phys. Rev. E 56 3661

[64] Lidar D A 2004 On the quantum computational complexity of the ising spin glass partition function and of knot invariants New J. Phys.
6167

[65] Knill E and Laflamme R 2001 Quantum computing and quadratically signed weight enumerators Inf. Process. Lett. 79 173-9

[66] Geraci]and Lidar D A 2010 Classical ising model test for quantum circuits New J. Phys. 12 075026

[67] vanden Nest M, Diir W, Raussendorf R and Briegel HJ 2009 Quantum algorithms for spin models and simulable gate sets for quantum
computation Phys. Rev. A 80 052334

[68] van den Nest M, Diir W and Briegel H] 2007 Classical spin models and the quantum-stabilizer formalism Phys. Rev. Lett. 98 117207

[69] van den Nest M, Diir W and Briegel H ] 2008 Completeness of the classical 2d ising model and universal quantum computation Phys.
Rev. Lett. 100 110501

[70] Fujii K 2013 Quantum information and statistical mechanics: an introduction to frontier Interdiscip. Inf. Sci. 19 1-15

[71] Master C P, Yamaguchi F and Yamamoto Y 2003 Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms
Phys. Rev. A67 032311

[72] Delas Cuevas G and Cubitt T S 2016 Simple universal models capture all classical spin physics Science 351 11803

[73] Istrail S 2000 Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition
function of the Ising model across non-planar surfaces Proc. 32nd Annual ACM Symp. Theory of Computing STOC (New York: ACM)
pp 87-96

[74] GoffL and RaussendorfR 2012 Classical simulation of measurement-based quantum computation on higher-genus surface-code
states Phys. Rev. A 86 042301

[75] Kitaev AY 2003 Fault-tolerant quantum computation by anyons Ann. Phys., NY 303 2-30

[76] BravyiSand Raussendorf R 2007 Measurement-based quantum computation with the toric code states Phys. Rev. A 76 022304

[77] Valiant L G 2002 Quantum circuits that can be simulated classically in polynomial time SIAM J. Comput. 31 1229-54

[78] Terhal BM and DiVincenzo D P 2002 Classical simulation of noninteracting-fermion quantum circuits Phys. Rev. A 65 032325

[79] Knill E 2001 Fermionic linear optics and matchgates arXiv:quant-ph /0108033

[80] Jozsa R and Miyake A 2008 Matchgates and classical simulation of quantum circuits Proc. R. Soc. A 464 3089—-106

[81] JozsaR, Kraus B, Miyake A and Watrous ] 2010 Matchgate and space-bounded quantum computations are equivalent Proc. R. Soc. A
466 809-30

[82] Fujii K and Tamate S 2016 Computational quantum-classical boundary of noisy commuting quantum circuits Sci. Rep. 6

[83] Aharonov D, Kitaev A and Nisan N 1998 Quantum circuits with mixed states Proc. 30th Annual ACM Symp. Theory of Computing STOC
(New York: ACM) pp 20-30

[84] AharonovD and Ben-Or M 1997 Fault-tolerant quantum computation with constant error Proc. 29th Annual ACM Symp. Theory of
Computing STOC (New York: ACM) pp 176-88

[85] RaussendorfR 2003 Measurement-based quantum computation with cluster states PhD Thesis Ludwig-Maximillians Universitt
Miinchen

[86] Nielsen M A and Dawson C M 2005 Fault-tolerant quantum computation with cluster states Phys. Rev. A 71 042323

[87] Fujii K 2016 Noise threshold of quantum supremacy arXiv:1610.03632

[88] Sinclair A, Srivastava P and Thurley M 2012 Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded
degree graphs Proc. 23rd Annual ACM-SIAM Symp. Discrete Algorithms SODA (Philadelphia: SIAM) pp 941-53

[89] Gao X, WangS-T and Duan L M 2017 Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model Phys. Rev. Lett.
118 040502

24


https://doi.org/10.1007/s00453-008-9231-x
https://doi.org/10.1007/s00453-008-9231-x
https://doi.org/10.1007/s00453-008-9231-x
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1137/0222066
https://doi.org/10.1137/0222066
https://doi.org/10.1137/0222066
https://doi.org/10.1017/S096354830600767X
https://doi.org/10.1017/S096354830600767X
https://doi.org/10.1017/S096354830600767X
https://doi.org/10.1137/S0097539794266407
https://doi.org/10.1137/S0097539794266407
https://doi.org/10.1137/S0097539794266407
https://doi.org/10.1109/FOCS.2012.56
https://doi.org/10.1109/FOCS.2012.56
https://doi.org/10.1109/FOCS.2012.56
http://arxiv.org/abs/1409.5627
https://doi.org/10.1103/PhysRevE.56.3661
https://doi.org/10.1088/1367-2630/6/1/167
https://doi.org/10.1016/S0020-0190(00)00222-2
https://doi.org/10.1016/S0020-0190(00)00222-2
https://doi.org/10.1016/S0020-0190(00)00222-2
https://doi.org/10.1088/1367-2630/12/7/075026
https://doi.org/10.1103/PhysRevA.80.052334
https://doi.org/10.1103/PhysRevLett.98.117207
https://doi.org/10.1103/PhysRevLett.100.110501
https://doi.org/10.4036/iis.2013.1
https://doi.org/10.4036/iis.2013.1
https://doi.org/10.4036/iis.2013.1
https://doi.org/10.1103/PhysRevA.67.032311
https://doi.org/10.1126/science.aab3326
https://doi.org/10.1126/science.aab3326
https://doi.org/10.1126/science.aab3326
https://doi.org/10.1103/PhysRevA.86.042301
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.76.022304
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1103/PhysRevA.65.032325
http://arxiv.org/abs/quant-ph/0108033
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1098/rspa.2009.0433
https://doi.org/10.1098/rspa.2009.0433
https://doi.org/10.1098/rspa.2009.0433
https://doi.org/10.1038/srep25598
https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/258533.258579
https://doi.org/10.1145/258533.258579
https://doi.org/10.1145/258533.258579
https://doi.org/10.1103/PhysRevA.71.042323
http://arxiv.org/abs/1610.03632
https://doi.org/10.1137/1.9781611973099.75
https://doi.org/10.1137/1.9781611973099.75
https://doi.org/10.1137/1.9781611973099.75
https://doi.org/10.1103/PhysRevLett.118.040502

	1. Introduction
	2. Brief summary of the results
	3. Preliminary
	3.1. Graph states and their properties
	3.2. Definitions of complexity theoretical notions
	3.3. Instantaneous quantum polynomial-time computation
	3.4. Strong simulation and post-BQP = PP theorem
	3.5. Related works

	4. Bridging IQP and Ising partition functions
	4.1. Joint probability distribution
	4.2. Marginal distribution

	5. Classical simulatable classes of IQP
	5.1. Classical simulatability: sparse commuting circuits
	5.2. Classical simulatability: planar-IQP

	6. Hardness of approximating Ising partition functions
	7. Conclusion and discussion
	Acknowledgments
	Appendix A.
	A.1. Proof of fact 1
	A.2. Proof of fact 2

	References



