25 research outputs found

    The Phoenix TECP Relative Humidity Sensor: Revised Results

    Get PDF
    The original calibration function of the RH sensor on the Phoenix mission's Thermal and Electrical Conductivity Sensor (TECP), has been revised to correct the erroneously-published original calibration equation, to demonstrate the value of this unique data set, and to improve characterization of H2O exchange between the martian regolith and atmosphere. TECP returned two data streams, the temperature of the electronics analog board (Tb) and the digital 12-bit output of the RH sensor (DN), both of which are required to uniquely specify the H2O abundance. Because the original flight instrument calibration was performed against a pair of hygrometers that measured frost point (Tf), the revised calibration equation is also cast in terms of frost point. The choice of functional form for the calibration function is minimally constrained. A series of profiles across the calibration data cloud at constant DN and Tb does not reveal any evidence of a complex functional form. Therefore, a series of polynomials in both DN and Tb was investigated, along with several non-linear functions of DN and Tb

    A Historical Search for the Occurrence of Habitable Ground Ice at the Phoenix Landing Site

    Get PDF
    A numerical model of the thermal history of Martian ground ice at the approximate location of the planned Phoenix landing site has been developed and used to identify instances of relatively warm ground ice over the last 10 Ma. Many terrestrial organisms are adapted to life at or below the freezing temperature of water, and we will use the approximate doubling time of terrestrial microbial populations as a function of temperature, is used as a metric against which to assess the "habitability" of Martian ground ice

    Climatological targets for Mars Pathfinder

    Get PDF
    Four areas fit within the elevation and latitude constraints: Chryse, Elysium, Amazonis, and Isidis. There is geomorphic evidence that all have supported standing water. In some cases it would be difficult to pick a landing site that had no hope of teaching us about the climatic history of Mars. The southeast Elysium Basin provides an optimal target in which a variety of materials may be accessible in a near-shore environment. The albedo of the region is moderately low, and the thermal inertia is indicative of moderate rock coverage or some consolidation of fines, arguing that the site has not been covered with eolian dust deposits

    CO2: Adsorption on palagonite and the Martian regolith

    Get PDF
    Possible scenarios for the evolution of the Martian climate are discussed. In the interest of determining an upper limit on the absorptive capacity of the Martian regolith, researchers examined the results of Fanale and Cannon (1971, 1974) for CO2 adsorption on nontronite and basalt. There appeared to be a strong proportionality between the capacity of the absorbent and its specific surface area. A model of the Martian climate is given that allows the researchers to make some estimates of exchangeable CO2 abundances

    Atmospheric H2O and the search for Martian brines

    Get PDF
    Abundant martian brines would have important implication for current theories of volatile migration on Mars, since, although the presence of metastable brines is quite plausible, any brine in the reasonably near-surface should be completely depleted on a timescale short in relation to the age of Mars. It is important to determine whether brines exist in the martian subsurface, for the current paradigm for understanding martian volatile regime requires substantial alteration if they are found to exist. It is determined, however, that the prospect for detection of a subsurface brine via atmospheric water vapor measurements is marginal. Four reasons are given for this conclusion

    A Coupled Soil-Atmosphere Model of H2O2 on Mars

    Get PDF
    The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H202 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H202 in the martian atmosphere and soil is developed. The concentration of H202 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H202 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H202 concentration of 30 nmoles/cu cm, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H202 lifetimes (up to 105 years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approx. 240 nmoles/cu cm, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cu cm require lifetimes of greater than 4.3 terrestrial years. For a wide range of H202 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H202 is not transported, it is plausible that organic compounds, protected from an oxidizing environment, may still exist. They would have been deposited by meteors, or be the organic remains of past life

    The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Get PDF
    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year.

    CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion.

    Get PDF
    Fast amoeboid migration is critical for developmental processes and can be hijacked by cancer cells to enhance metastatic dissemination. This migratory behavior is tightly controlled by high levels of actomyosin contractility, but how it is coupled to other cytoskeletal components is poorly understood. Septins are increasingly recognized as novel cytoskeletal components, but details on their regulation and contribution to migration are lacking. Here, we show that the septin regulator Cdc42EP5 is consistently required for amoeboid melanoma cells to invade and migrate into collagen-rich matrices and locally invade and disseminate in vivo. Cdc42EP5 associates with actin structures, leading to increased actomyosin contractility and amoeboid migration. Cdc42EP5 affects these functions through SEPT9-dependent F-actin cross-linking, which enables the generation of F-actin bundles required for the sustained stabilization of highly contractile actomyosin structures. This study provides evidence that Cdc42EP5 is a regulator of cancer cell motility that coordinates actin and septin networks and describes a unique role for SEPT9 in melanoma invasion and metastasis

    A Model for Formation of Dust, Soil and Rock Coatings on Mars: Physical and Chemical Processes on the Martian Surface

    No full text
    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data From Mars and geologic analogs from terrestrial sites. One basic premise of this model is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results on the surface. Physical processes distribute dust particles on rocks and drift units, forming physically-aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra, and contain primarily nanophase and poorly crystalline ferric oxides/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on mixtures containing poorly crystalline and crystalline ferric oxides/oxyhydroxides, sulfates and silicates that range in size from nanophase to 1-2 pm diameter particles. Cemented products of these soil mixtures are formed in these experiments and variation in the surface texture was observed for samples containing smectites, non-hydrated silicates or sulfates. Reflectance spectra were measured of the initial particulate mixtures, the cemented products and ground versions of the cemented material. The spectral contrast in the visible/near-infrared and mid-infrared regions is significantly reduced for the cemented material compared to the initial soil, and somewhat reduced for the ground, cemented soil compared to the initial soil. The results of this study suggest that diurnal and seasonal cycling on Mars will have a profound effect on the texture and spectral properties of the dust/soil particles on the surface. The model developed in this study provides an explanation for the generation of cemented or crusted soil units and rock coatings on Mars and may explain albedo variations on the surface observed near large rocks or crater rims
    corecore