3 research outputs found

    Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    No full text
    Modulus of resilience, the measure of a material’s ability to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurements reveal a metal-like high yield strength (∼500 MPa) with an unusually low, foam-like Young’s modulus (∼7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ∼24 MJ/m<sup>3</sup> as well as exceptional modulus of resilience per density of ∼13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength

    Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale

    No full text
    Patterning materials efficiently at the smallest length scales is a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly­(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) and the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication

    Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks

    No full text
    A central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below ∼20 nm to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with a thickness of 270 nm and feature sizes down to ∼1 nm. Super-resolution imaging resolves NVs with a full-width maximum distribution of 26 ± 7 nm and a distribution of NV–NV separations of 16 ± 5 nm
    corecore