20 research outputs found

    Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington's disease patients.

    No full text
    Huntington's disease (HD) is an inherited neurodegenerative disorder with progressive impairment of motor, behavioral and cognitive functions. The clinical features of HD are closely related to the degeneration of the basal ganglia, predominantly the striatum. The main striatal output structure, the globus pallidus, strongly accumulates metalloprotein-bound iron, which was recently shown to influence the diffusion tensor scalar values. To test the hypothesis that this effect dominates in the iron-rich basal ganglia of HD patients, we examined the globus pallidus using DTI and T2 relaxometry sequences. Quantitative magnetic resonance (MR), clinical and genetic data (number of CAG repeats) were obtained from 14 HD patients. MR parameters such as the T2 relaxation rate (RR), fractional anisotropy (FA) and mean diffusivity (MD) were analysed. A positive correlation was found between RR and FA (R2=0.84), between CAG and RR (R2=0.59) and between CAG and FA (R2=0.44). A negative correlation was observed between RR and MD (R2=0.66). A trend towards correlation between CAG and MD was noted. No correlation between MR and clinical parameters was found. Our results indicate that especially magnetic resonance FA measurements in the globus pallidus of HD patients may be strongly affected by metalloprotein-bound iron accumulation

    Histogram of fractional anisotropy values in the groups of regions of interest (ROI) used to generate the color scale.

    No full text
    <p>BG, basal ganglia; GM, gray matter; CC freehand, freehand selection in the corpus callosum; CC cROI, circular ROI selection in the corpus callosum.</p

    New Non-Linear Color Look-Up Table for Visualization of Brain Fractional Anisotropy Based on Normative Measurements – Principals and First Clinical Use

    Get PDF
    <div><p>Fractional anisotropy (FA) is the most commonly used quantitative measure of diffusion in the brain. Changes in FA have been reported in many neurological disorders, but the implementation of diffusion tensor imaging (DTI) in daily clinical practice remains challenging. We propose a novel color look-up table (LUT) based on normative data as a tool for screening FA changes. FA was calculated for 76 healthy volunteers using 12 motion-probing gradient directions (MPG), a subset of 59 subjects was additionally scanned using 30 MPG. Population means and 95% prediction intervals for FA in the corpus callosum, frontal gray matter, thalamus and basal ganglia were used to create the LUT. Unique colors were assigned to inflection points with continuous ramps between them. Clinical use was demonstrated on 17 multiple system atrophy (MSA) patients compared to 13 patients with Parkinson disease (PD) and 17 healthy subjects. Four blinded radiologists classified subjects as MSA/non-MSA. Using only the LUT, high sensitivity (80%) and specificity (84%) were achieved in differentiating MSA subjects from PD subjects and controls. The LUTs generated from 12 and 30 MPG were comparable and accentuate FA abnormalities.</p></div

    Possible application of the look-up table to fractional anisotropy imaging.

    No full text
    <p>a) Healthy volunteer data (60 year old male), b) A subject with multiple system atrophy (62 year old male). Decreased FA in the cerebellar peduncles is best appreciated in the rightmost image).</p

    Definition of the color look-up scale for fractional anisotropy (FA).

    No full text
    <p>The color intensity for red, green and blue channels is in the range of 0–255, the combination of the intensities in these channels results in a unique color for any FA value.</p

    Three groups of regions of interest (ROI) used in the generation of the non-linear color look-up table (LUT).

    No full text
    <p>The corpus callosum (labelled green) was selected using both freehand (two ROIs) and circular ROIs (cROIs, four areas). Freehand selection included the rostrum and part of the genu of the corpus callosum as well as the splenium of the corpus callosum and were drawn in the sagittal plane (a). Circular ROIs were positioned in the middle of these anatomical areas, and were placed in the sagittal (a) and transverse (c) planes. Gray matter (red) selections included the precentral gyrus (Brodmann area 4, section (b)) and the thalamus (c). Selections in the basal ganglia (blue) were positioned in putamen, pallidum and caudate nucleus (c). The anterior aspect of the subject is on the left (a) or the top (b,c) of the images.</p

    Inflection points for the Look-Up Table.

    No full text
    <p>FA, fractional anisotropy; RGB, red-green-blue components of color (note: this image is in CMYK colorspace, therefore colors do not exactly match RGB colorspace); BG, lower border of prediction interval for basal ganglia (BG) divided by two; BG, lower border of prediction interval for BG; BG, mean value for BG; GM, mean value for gray matter (GM); GM, upper border of prediction interval for GM; CCfreehand, lower border of prediction interval for freehand selection of corpus callosum (CC); CCfreehand, upper border of prediction interval for freehand selection of CC; CCroi, mean value for circular selection of CC.</p
    corecore