849 research outputs found

    Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences

    Get PDF
    The solid-state NMR spectra of many NMR active elements are often extremely broad due to the presence of chemical shift anisotropy (CSA) and/or the quadrupolar interaction (for nuclei with spin I \u3e 1/2). These NMR interactions often give rise to wideline solid-state NMR spectra which can span hundreds of kHz or several MHz. Here we demonstrate that by using fast MAS, proton detection and dipolar hetero-nuclear multiple-quantum (D-HMQC) pulse sequences, it is possible to rapidly acquire 2D spectra which correlate 1H chemical shifts to the indirectly detected wideline MAS powder patterns of dipolar coupled hetero-nuclei. The D-HMQC pulse sequence enables broadband excitation of the wideline hetero-nuclear NMR spectrum and provides higher sensitivity by detecting the narrower and more sensitive 1H NMR signal. This approach is demonstrated for the rapid acquisition of 2D 1H detected 195Pt solid-state NMR spectra of cisplatin and transplatin and the 71Ga solid-state NMR spectrum of a self-assembled Ga coordination polymer of unconfirmed structure. This approach should be broadly applicable for the rapid acquisition of wideline MAS solid-state NMR spectra of moderately abundant NMR nuclei

    Sensitivity-Enhanced 207Pb Solid-State NMR Spectroscopy for the Rapid, Non-Destructive Characterization of Organolead Halide Perovskites

    Get PDF
    Organolead halide and mixed halide perovskites (CH3NH3PbX3, CH3NH3PbX3–nYn, X and Y = Cl–, Br– or I–), are promising materials for photovoltaics and optoelectronic devices. 207Pb solid-state NMR spectroscopy has previously been applied to characterize phase segregation and halide ion speciation in mixed halide perovskites. However, NMR spectroscopy is an insensitive technique that often requires large sample volumes and long signal averaging periods. This is especially true for mixed halide perovskites, which give rise to extremely broad 207Pb solid-state NMR spectra. Here, we quantitatively compare the sensitivity of the various solid-state NMR techniques on pure and mixed halide organolead perovskites and demonstrate that both fast MAS and DNP can provide substantial gains in NMR sensitivity for these materials. With fast MAS and proton detection, high signal-to-noise ratio two-dimensional (2D) 207Pb-1H heteronuclear correlation (HETCOR) NMR spectra can be acquired in less than half an hour from only ca. 5 ”L of perovskite material. Modest relayed DNP enhancements on the order of 1 to 20 were obtained for perovskites. The cryogenic temperatures (110 K) used for DNP experiments also provide a significant boost in sensitivity. Consequently, it was possible to obtain the 207Pb solid-state NMR spectrum of a 300 nm thick model thin film of CH3NH3PbI3 in 34 hours by performing solid-state NMR experiments with a sample temperature of 110 K. This result demonstrates the possibility of using NMR spectroscopy for characterization of perovskite thin films

    High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by Îł-Irradiation

    Get PDF
    High-field magic angle spinning dynamic nuclear polarization (MAS DNP) is often used to enhance the sensitivity of solid-state nuclear magnetic resonance experiments by transferring spin polarization from electron spins to nuclear spins. Here, we demonstrate that γ-irradiation induces the formation of stable radicals in inorganic solids, such as fused quartz and borosilicate glasses, as well as organic solids, such as glucose, cellulose, and a urea/polyethylene polymer. The radicals were then used to polarize 29Si or 1H spins in the core of some of these materials. Significant MAS DNP enhancements (Δ) of more than 400 and 30 were obtained for fused quartz and glucose, respectively. For other samples, negligible values of Δ were obtained, likely due to low concentrations of radicals or the presence of abundant quadrupolar spins. These results demonstrate that ionizing radiation is a promising alternative method for generating stable radicals that are suitable for high-field MAS DNP experiments

    Dynamic nuclear polarisation enhanced N-14 overtone MAS NMR spectroscopy

    Get PDF
    Dynamic nuclear polarisation (DNP) has been used to obtain magic angle spinning (NOT)-N-14 (nitrogen-14 overtone) solid-state NMR spectra from several model amino acids, with both direct and indirect observation of the (NOT)-N-14 signal. The crystalline solids were impregnated with biradical solutions of organic liquids that do not dissolve the crystalline phase. The bulk phase was then polarized via H-1 spin diffusion from the highly-polarized surface H-1 nuclei, resulting in H-1 DNP signal enhancements of around two orders of magnitude. Cross polarisation from H-1 nuclei directly to the N-14 overtone transition is demonstrated under magic angle spinning, using a standard pulse sequence with a relatively short contact time (on the order of 100 ms). This method can be used to acquire N-14 overtone MAS powder patterns that match closely with simulated line shapes, allowing isotropic chemical shifts and quadrupolar parameters to be measured. DNP enhancement also allows the rapid acquisition of D-2 (NOT)-N-14 heteronuclear correlation spectra from natural abundance powder samples. H-1-(NOT)-N-14 HETCOR and C-13-(NOT)-N-14 HMQC pulse sequences were used to observe all single-bond H-N and C-N correlations in histidine hydrochloride monohydrate, with the spectra obtained in a matter of hours. Due to the high natural abundance of the N-14 isotope (99.6%) and the advantages of observing the overtone transition, these methods provide an attractive route to the observation of C-N correlations from samples at natural isotopic abundance and enable the high resolution measurement of N-14 chemical shifts and quadrupolar interaction parameters

    ‘Surface Contrast’ NMR reveals non‐innocent role of support in Pd/CeO2 catalyzed phenol hydrogenation

    Get PDF
    Ceria (CeO 2 )‐supported metals are widely used as catalysts because of their exceptional redox properties. Here, we use surface contrast NMR methods to investigate the hydrogenation of phenol by Pd supported on ceria nanoparticles. We show that the rigid and planar binding of phenol to Pd is mediated by a weak and highly mobile association of the small molecule to ceria. Interestingly, while addition of phosphate to the mixture does not perturb the adsorption of phenol on Pd, it destabilizes its interaction with ceria and proportionally decreases the rate of catalytic conversion. Our data provide strong experimental evidence that weak interactions between adsorbate and ceria are catalytically competent, and explain the exceptional performance of Pd/CeO 2 for reductive conversions under mild reaction conditions

    The Solvent–Solid Interface of Acid Catalysts Studied by High Resolution MAS NMR

    Get PDF
    High-resolution magic angle spinning (HRMAS) NMR spectroscopy was used to study the eïŹ€ect of mixed solvent systems on the acidity at the solid−liquid interface of solid acid catalysts. A method was developed that can exploit beneïŹts of both solution and solid-state NMR (SSNMR) by wetting porous solids with small volumes of liquids (ÎŒL/mg) to create an interfacial liquid that exhibits unique motional dynamics intermediate to an isotropic liquid and a rigid solid. Results from these experiments provide information about the inïŹ‚uence of the solvent mixtures on the acidic properties at a solid−liquid interface. Importantly, use of MAS led to spectra with full resolution between water in an acidic environment and that of bulk water. Using mixed solvent systems, the chemical shift of water was used to compare the relative acidity as a function of the hydration level of the DMSO-d6 solvent. Nonlinear increasing acidity was observed as the DMSO-d6 became more anhydrous. 1H HR-MAS NMR experiments on a variety of supported sulfonic acid functionalized materials, suggest that the acid strength and number of acid sites correlates to the degree of broadening of the peaks in the 1H NMR spectra. When the amount of liquid added to the solid is increased (corresponding to a thicker liquid layer), fully resolved water phases were observed. This suggests that the acidic proton was localized predominantly within a 2 nm distance from the solid. EXSY 1H−1H 2D experiments of the thin layers were used to determine the rate of proton exchange for diïŹ€erent catalytic materials. These results demonstrated the utility of using (SSNMR) on solid−liquid mixtures to selectively probe catalyst surfaces under realistic reaction conditions for condensed phase systems

    Probing O-H Bonding Through Proton Detected 1H-17O Double Resonance Solid-State NMR Spectroscopy

    Get PDF
    The ubiquity of oxygen in organic, inorganic, and biological systems has stimulated the application and development of 17O solid-state NMR spectroscopy as a probe of molecular structure and dynamics. Unfortunately, 17O solid-state NMR experiments are often hindered by the combination of broad NMR signals and low sensitivity. Here, it is demonstrated that fast MAS and proton detection with the D-RINEPT pulse sequence can be generally applied to enhance the sensitivity and resolution of 17O solid-state NMR experiments. Complete 2D 17O→1H D-RINEPT correlation NMR spectra were typically obtained in fewer than 10 hours from less than 10 milligrams of material, with low to moderate 17O enrichment (less than 20%). 2D 1H-17O correlation solid-state NMR spectra allow overlapping oxygen sites to be resolved on the basis of proton chemical shifts or by varying the mixing time used for 1H-17O magnetization transfer. In addition, J-resolved or separated local field (SLF) blocks can be incorporated into the D-RINEPT pulse sequence to allow direct measurement of one-bond 1H-17O scalar coupling constants (1JOH) or 1H-17O dipolar couplings (DOH), respectively; the latter of which can be used to infer 1H-17O bond lengths. 1JOH and DOH calculated from planewave density functional theory (DFT) show very good agreement with experimental values. Therefore, the 2D 1H-17O correlation experiments, 1H-17O scalar and dipolar couplings, and planewave DFT calculations provide a method to precisely determine proton positions relative to oxygen atoms. This capability opens new opportunities to probe interactions between oxygen and hydrogen in a variety of chemical systems
    • 

    corecore