3,157 research outputs found

    Helioseismology challenges models of solar convection

    Full text link
    Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this issue of PNAS, Hanasoge et al. (2012) employ recent helioseismic observations to derive stringent empirical constraints on the amplitude of large-scale convective velocities in the solar interior. They report an upper limit that is far smaller than predicted by a popular hydrodynamic numerical simulation.Comment: Printed in the Proceedings of the National Academy of Sciences (2 pages, 1 figure). Available at http://www.pnas.org/cgi/doi/10.1073/pnas.120887510

    Interpretation of Helioseismic Travel Times - Sensitivity to Sound Speed, Pressure, Density, and Flows

    Full text link
    Time-distance helioseismology uses cross-covariances of wave motions on the solar surface to determine the travel times of wave packets moving from one surface location to another. We review the methodology to interpret travel-time measurements in terms of small, localized perturbations to a horizontally homogeneous reference solar model. Using the first Born approximation, we derive and compute 3D travel-time sensitivity (Fr\'echet) kernels for perturbations in sound-speed, density, pressure, and vector flows. While kernels for sound speed and flows had been computed previously, here we extend the calculation to kernels for density and pressure, hence providing a complete description of the effects of solar dynamics and structure on travel times. We treat three thermodynamic quantities as independent and do not assume hydrostatic equilibrium. We present a convenient approach to computing damped Green's functions using a normal-mode summation. The Green's function must be computed on a wavenumber grid that has sufficient resolution to resolve the longest lived modes. The typical kernel calculations used in this paper are computer intensive and require on the order of 600 CPU hours per kernel. Kernels are validated by computing the travel-time perturbation that results from horizontally-invariant perturbations using two independent approaches. At fixed sound-speed, the density and pressure kernels are approximately related through a negative multiplicative factor, therefore implying that perturbations in density and pressure are difficult to disentangle. Mean travel-times are not only sensitive to sound-speed, density and pressure perturbations, but also to flows, especially vertical flows. Accurate sensitivity kernels are needed to interpret complex flow patterns such as convection

    Generalization of the noise model for time-distance helioseismology

    Full text link
    In time-distance helioseismology, information about the solar interior is encoded in measurements of travel times between pairs of points on the solar surface. Travel times are deduced from the cross-covariance of the random wave field. Here we consider travel times and also products of travel times as observables. They contain information about e.g. the statistical properties of convection in the Sun. The basic assumption of the model is that noise is the result of the stochastic excitation of solar waves, a random process which is stationary and Gaussian. We generalize the existing noise model (Gizon and Birch 2004) by dropping the assumption of horizontal spatial homogeneity. Using a recurrence relation, we calculate the noise covariance matrices for the moments of order 4, 6, and 8 of the observed wave field, for the moments of order 2, 3 and 4 of the cross-covariance, and for the moments of order 2, 3 and 4 of the travel times. All noise covariance matrices depend only on the expectation value of the cross-covariance of the observed wave field. For products of travel times, the noise covariance matrix consists of three terms proportional to 1/T1/T, 1/T21/T^2, and 1/T31/T^3, where TT is the duration of the observations. For typical observation times of a few hours, the term proportional to 1/T21/T^2 dominates and Cov[τ1τ2,τ3τ4]≈Cov[τ1,τ3]Cov[τ2,τ4]+Cov[τ1,τ4]Cov[τ2,τ3]Cov[\tau_1 \tau_2, \tau_3 \tau_4] \approx Cov[\tau_1, \tau_3] Cov[\tau_2, \tau_4] + Cov[\tau_1, \tau_4] Cov[\tau_2, \tau_3], where the τi\tau_i are arbitrary travel times. This result is confirmed for p1p_1 travel times by Monte Carlo simulations and comparisons with SDO/HMI observations. General and accurate formulae have been derived to model the noise covariance matrix of helioseismic travel times and products of travel times. These results could easily be generalized to other methods of local helioseismology, such as helioseismic holography and ring diagram analysis

    Signal and noise in helioseismic holography

    Full text link
    Helioseismic holography is an imaging technique used to study heterogeneities and flows in the solar interior from observations of solar oscillations at the surface. Holograms contain noise due to the stochastic nature of solar oscillations. We provide a theoretical framework for modeling signal and noise in Porter-Bojarski helioseismic holography. The wave equation may be recast into a Helmholtz-like equation, so as to connect with the acoustics literature and define the holography Green's function in a meaningful way. Sources of wave excitation are assumed to be stationary, horizontally homogeneous, and spatially uncorrelated. Using the first Born approximation we calculate holograms in the presence of perturbations in sound-speed, density, flows, and source covariance, as well as the noise level as a function of position. This work is a direct extension of the methods used in time-distance helioseismology to model signal and noise. To illustrate the theory, we compute the hologram intensity numerically for a buried sound-speed perturbation at different depths in the solar interior. The reference Green's function is obtained for a spherically-symmetric solar model using a finite-element solver in the frequency domain. Below the pupil area on the surface, we find that the spatial resolution of the hologram intensity is very close to half the local wavelength. For a sound-speed perturbation of size comparable to the local spatial resolution, the signal-to-noise ratio is approximately constant with depth. Averaging the hologram intensity over a number NN of frequencies above 3 mHz increases the signal-to-noise ratio by a factor nearly equal to the square root of NN. This may not be the case at lower frequencies, where large variations in the holographic signal are due to the individual contributions of the long-lived modes of oscillation.Comment: Submitted to Astronomy and Astrophysic

    Seismic probes of solar interior magnetic structure

    Full text link
    Sunspots are prominent manifestations of solar magnetoconvection and imaging their subsurface structure is an outstanding problem of wide physical importance. Travel times of seismic waves that propagate through these structures are typically used as inputs to inversions. Despite the presence of strongly anisotropic magnetic waveguides, these measurements have always been interpreted in terms of changes to isotropic wavespeeds and flow-advection related Doppler shifts. Here, we employ PDE-constrained optimization to determine the appropriate parameterization of the structural properties of the magnetic interior. Seven different wavespeeds fully characterize helioseismic wave propagation: the isotropic sound speed, a Doppler-shifting flow-advection velocity and an anisotropic magnetic velocity. The structure of magnetic media is sensed by magnetoacoustic slow and fast modes and Alfv\'{e}n waves, each of which propagates at a different wavespeed. We show that even in the case of weak magnetic fields, significant errors may be incurred if these anisotropies are not accounted for in inversions. Translation invariance is demonstrably lost. These developments render plausible the accurate seismic imaging of magnetoconvection in the Sun.Comment: 4 pages, 4 figures, accepted Physical Review Letter
    • …
    corecore