6 research outputs found

    Benchmarking study between capacitive and electronic load technic to track I-V and P-V of a solar panel

    Get PDF
    To detect defects of solar panel and understand the effect of external parameters such as fluctuations in illumination, temperature, and the effect of a type of dust on a photovoltaic (PV) panel, it is essential to plot the Ipv=f(Vpv) characteristic of the PV panel, and the simplest way to plot this I-V characteristic is to use a variable resistor. This paper presents a study of comparison and combination between two methods: capacitive and electronic loading to track I-V characteristic. The comparison was performed in terms of accuracy, response time and instrumentation cost used in each circuit, under standard temperature and illumination conditions by using polycrystalline solar panel type SX330J and monocrystalline solar panels type ET-M53630. The whole system is based on simple components, less expensive and especially widely used in laboratories. The results will be between the datasheet of the manufacturer with the experimental data, refinements and improvements concerning the number of points and the trace time have been made by combining these two methods

    Analysis of the Spatial and Temporal Variability of Solar Radiation and its Use in the Design of Energy Systems

    No full text
    Solar energy plays a central role in the energy transition. Clouds generate locally large fluctuations in the generation output of photovoltaic systems, which is a major problem for energy systems such as microgrids, among others. For an optimal design of a power system, this work analyzed the variability using a spatially distributed sensor network at Stuttgart Airport. It has been shown that the spatial distribution partially reduces the variability of solar radiation. A tool was also developed to estimate the output power of photovoltaic systems using irradiation time series and assumptions about the photovoltaic sites. For days with high fluctuations of the estimated photovoltaic power, different energy system scenarios were investigated. It was found the approach can be used to have a more realistic representation of aggregated PV power taking spatial smoothing into account and that the resulting PV power generation profiles provide a good basis for energy system design considerations like battery sizing

    Utilization of MOSFET transistor as an electronic load to trace I-V and P-V curve of a solar panel

    No full text
    To understand the electrical behavior of a photovoltaic panel, it is necessary to know the characteristic Ipv = f(Vpv). The best way to obtainthis I-V curve is to use a variable resistor. This paper proposes a new and simple technique based on a MOSFET transistor as a variable load, which whose gate voltage is controlled by an RC filter from the Arduino. A comparison under standard temperature and illumination conditions between the manufacturer’s datasheet with the simulation by MATLAB/Simulink on the one hand, and on the other hand between the manufacturer’s datasheet with the experimental data for the evaluation of this technique that has been performed

    Energy Optimization for Companies with Digital Flex Twins

    No full text
    In this paper we report on further success of our work to develop a multi-method energy optimization which works with a digital twin concept. The twin concept serves to replicate production processes of different kinds of production companies, including complex energy systems and test market interactions to then use them for model predictive optimizing. The presented work finally reports about the performed flexibility assessment leading to a flexibility audit with a list of measures and the impact of energy optimizations made related to interactions with the local power grid i.e., the exchange node of the low voltage distribution grid. The analysis and continuous exploration of flexibilities as well as the exchange with energy markets require a “guide” leading to continuous optimization with a further tool like the Flexibility Survey and Control Panel helping decision-making processes on the day-ahead horizon for real production plants or the investment planning to improve machinery, staff schedules and production infrastructure

    Leveraging Industry Energy Flexibility to Enable Higher Shares of Renewable Energy in the Power System – an Experimental Case Study

    No full text
    One of the major challenges impeding the energy transition is the intermittency of solar and wind electricity generation due to their dependency on weather changes. The demand-side energy flexibility contributes considerably to mitigate the energy supply/demand imbalances resulting from external influences such as the weather. As one of the largest electricity consumers, the industrial enterprises present a high demand-side flexibility potential from their production processes and on-site energy assets. In this direction, methods are needed with a focus on enabling the energy flexibility and ensure an active participation of such enterprises in the electricity markets especially with variable prices of electricity. This paper presents a generic model library for an industrial enterprise implemented with optimal control for energy flexibility purposes. The components in the model library represent the typical technical units of an industrial enterprise on material, media, and energy flow levels with their operative constraints. A case study of a plastic manufacturing plant using the generic model library is also presented, in which the results of two simulation with different electricity prices are compared and the behavior of the model can be assessed. The results show that the model provides an optimal scheduling of the manufacturing system according to the variations in the electricity prices, and ensures an optimal control for utilities and energy systems needed for the production

    GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft

    No full text
    Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde. Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren
    corecore