15 research outputs found

    H2, N2, CO2, and CH4 unary adsorption isotherm measurements at low and high pressures on zeolitic imidazolate framework ZIF-8

    Get PDF
    Excess adsorption of CO2, CH4, N2, and H2 on ZIF-8 was measured gravimetrically in the pressure range ranging from vacuum to 30 MPa at 298.15, 313.15, 333.15, 353.15, and 394.15 K using a magnetic suspension balance. The textural properties of the adsorbent material─i.e., skeletal density, surface area, pore volume, and pore-size distribution─were estimated by helium gravimetry and N2 (77 K) physisorption. The adsorption isotherms were fitted with the Sips isotherm model and the virial equation, and the values of isosteric heat of adsorption and Henry constants for the gases were determined using the latter

    Effect of surface functionalization on the moisture stability and sorption properties of porous boron nitride

    Get PDF
    Porous boron nitride (BN) is a promising adsorbent owing to its high surface area and porosity, as well as thermal and oxidative stability. It has been explored in the past decade for applications in gas and liquid separations, such as CO2 capture and water cleaning. However, the material has displayed hydrolytic instability. Owing to the presence of moisture in most industrial settings, whether it is for storage or cyclic adsorption processes, ensuring the moisture stability of an adsorbent is crucial. While this topic has been researched for other adsorbents such as zeolites and metal organic frameworks (MOFs), little is known on controlling the hydrolytic stability of porous BN. In this study, we propose a method to enhance porous BN's hydrolytic stability via surface functionalization using a fluoroalkylsilane. We explored two different routes of functionalization: (i) functionalization of porous BN powder followed by pelletization (route 1) and (ii) coating of porous BN pellets with fluoroalkylsilane (route 2). Spectroscopic, analytical and imaging techniques confirmed the functionalization process qualitatively and quantitatively. We subjected the functionalized samples to moisture exposure at 54% RH (similar to common storage conditions) and 92% RH (similar to flue gas stream conditions with high moisture content), and characterized them to probe their resistance to moisture. We also investigated their equilibrium and kinetic sorption properties in the context of CO2/N2 separation. Both routes produced materials with enhanced moisture stability. However, we noted differences between both functionalization routes. Route 2 produced a sample with a higher grafting yield and hydrophobic nature, and therefore better resistance to moisture exposure than route 1. From a sorption point of view, despite reduced porosity, the functionalized samples maintain reasonable CO2 uptakes. The functionalization led to changes in the textural features of the samples, which caused differences in the mass transfer. This work shows that functionalization could be used to protect porous BN upon moisture exposure

    Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    Get PDF
    INTRODUCTION: Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS: Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS: Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION: After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients

    High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis

    Get PDF
    Increased mobilization of circulating endothelial progenitor cells may represent a new biological hallmark of myeloproliferative neoplasms. We measured circulating endothelial colony forming cells (ECFCs) in 106 patients with primary myelofibrosis, fibrotic stage, 49 with prefibrotic myelofibrosis, 59 with essential thrombocythemia or polycythemia vera, and 43 normal controls. Levels of ECFC frequency for patient's characteristics were estimated by using logistic regression in univariate and multivariate setting. The sensitivity, specificity, likelihood ratios, and positive predictive value of increased ECFC frequency were calculated for the significantly associated characteristics. Increased frequency of ECFCs resulted independently associated with history of splanchnic vein thrombosis (adjusted odds ratio = 6.61, 95% CI = 2.54–17.16), and a summary measure of non-active disease, i.e. hemoglobin of 13.8 g/dL or lower, white blood cells count of 7.8×109/L or lower, and platelet count of 400×109/L or lower (adjusted odds ratio = 4.43, 95% CI = 1.45–13.49) Thirteen patients with splanchnic vein thrombosis non associated with myeloproliferative neoplasms were recruited as controls. We excluded a causal role of splanchnic vein thrombosis in ECFCs increase, since no control had elevated ECFCs. We concluded that increased frequency of ECFCs represents the biological hallmark of a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. The recognition of this disease category copes with the phenotypic mimicry of myeloproliferative neoplasms. Due to inherent performance limitations of ECFCs assay, there is an urgent need to arrive to an acceptable standardization of ECFC assessment

    Social anthropology with indigenous peoples in Brazil, Canada and Australia: a comparative approach

    Full text link
    corecore