7,184 research outputs found
Fuzzy logic as a decision-making support system for the indication of bariatric surgery based on an index (OBESINDEX) generated by the association between body fat and body mass index
Background: A Fuzzy Obesity Index (OBESINDEX) for use as an alternative in bariatric surgery indication (BSI) is presented. The search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. BMI (body mass index) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. This paper presents a new fuzzy mechanism for evaluating obesity by associating BMI with %BF that yields a fuzzy obesity index for obesity evaluation and treatment and allows building up a Fuzzy Decision Support System (FDSS) for BSI.

Methods: Seventy-two patients were evaluated for both BMI and %BF. These data are modified and treated as fuzzy sets. Afterwards, the BMI and %BF classes are aggregated yielding a new index (OBESINDEX) for input linguistic variable are considered the BMI and %BF, and as output linguistic variable is employed the OBESINDEX, an obesity classification with entirely new classes of obesity in the fuzzy context as well is used for BSI.

Results: There is a gradual, smooth obesity classification and BSI when using the proposed fuzzy obesity index when compared with other traditional methods for dealing with obesity.

Conclusion: The BMI is not adequate for surgical indication in all the conditions and fuzzy logic becomes an alternative for decision making in bariatric surgery indication based on the OBESINDEX
Fuzzy logic as a decision-making support system for the indication of bariatric surgery based on an index (MAFOI) generated by the association between body fat and body mass index.
Background: A fuzzy obesity index (MAFOI) for use as an alternative to bariatric surgery indication (BSI) is presented. The search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. BMI (body mass index) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. This paper presents a new fuzzy mechanism for evaluating obesity by associating BMI with %BF that yields a fuzzy obesity index for obesity evaluation and treatment and allows building up a Fuzzy Decision Support System (FDSS) for BSI. Methods: Seventy-two patients were evaluated for both BMI and %BF. These data are modified and treated as fuzzy sets. Afterwards, the BMI and %BF classes are aggregated yielding a new index (MAFOI) for input linguistic variable are considered the BMI and %BF, and as output linguistic variable is employed the MAFOI, an obesity classification with entirely new classes of obesity in the fuzzy context as well as is used for BSI. Results: There is gradual, smooth obesity classification and BSI when using the proposed fuzzy obesity index when compared with other traditional methods for dealing with obesity.
Conclusion: The BMI is not adequate for surgical indication in all the conditions and fuzzy logic becomes an alternative for decision making in bariatric surgery indication based on the MAFOI
Small quark stars in the chromodielectric model
Equations of state for strange quark matter in beta equilibrium at high
densities are used to investigate the structure (mass and radius) of compact
objects. The chromodielectric model is used as a general framework for the
quark interactions, which are mediated by chiral mesons, and , and by a confining chiral singlet dynamical field, . Using a
quartic potential for , two equations of state for the same set of model
parameters are obtained, one with a minimum at around the nuclear matter
density and the other at . Using the latter
equation of state in the Tolman-Oppenheimer-Volkoff equations we found
solutions corresponding to compact objects with km and . The phenomenology of recently discovered X-ray sources is compatible
with the type of quark stars that we have obtained.Comment: 8 pages, AIP macros; Talk delivered at the Pan American Advanced
Studies Institute (PASI) Conference "New States of Matter in Hadronic
Interactions", Campos do Jordao, Brazil, January 200
Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures
A study of the gas pressure effect in the position resolution of an
interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic
position resolution for pure noble gases (Argon and Xenon) and their mixtures
with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for
photon energies between 5.4 and 60.0 keV, being possible to establish a linear
match between the intrinsic position resolution and the inverse of the gas
pressure in that energy range. In order to evaluate the quality of the method
here described, a comparison between the available experimental data and the
calculated one in this work, is done and discussed. In the majority of the
cases, a strong agreement is observed
A dynamic method for charging-up calculations: the case of GEM
The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is
an important and powerful tool for the design and optimization of such
detectors. However, several attempts to simulate exactly the effective charge
gain have not been completely successful. Namely, the gain stability over time
has not been fully understood. Charging-up of the insulator surfaces have been
pointed as one of the responsible for the difference between experimental and
Monte Carlo results. This work describes two iterative methods to simulate the
charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first
method uses a constant step for avalanches time evolution, very detailed, but
slower to compute. The second method uses a dynamic step that improves the
computing time. Good agreement between both methods was reached. Despite of
comparison with experimental results shows that charging-up plays an important
role in detectors operation, should not be the only responsible for the
difference between simulated and measured effective gain, but explains the time
evolution in the effective gain.Comment: Minor changes in grammatical statements and inclusion of some
important information about experimental setup at section "Comparison with
experimental results
Simulation of gain stability of THGEM gas-avalanche particle detectors
Charging-up processes affecting gain stability in Thick Gas Electron
Multipliers (THGEM) were studied with a dedicated simulation toolkit.
Integrated with Garfield++, it provides an effective platform for systematic
phenomenological studies of charging-up processes in MPGD detectors. We
describe the simulation tool and the fine-tuning of the step-size required for
the algorithm convergence, in relation to physical parameters. Simulation
results of gain stability over time in THGEM detectors are presented, exploring
the role of electrode-thickness and applied voltage on its evolution. The
results show that the total amount of irradiated charge through electrode's
hole needed for reaching gain stabilization is in the range of tens to hundreds
of pC, depending on the detector geometry and operational voltage. These
results are in agreement with experimental observations presented previously
Rotterdam Prostate Cancer Risk Calculator: Development and Usability Testing of the Mobile Phone App
BACKGROUND:
The use of prostate cancer screening tools that take into account relevant prebiopsy information (ie, risk calculators) is recommended as a way of determining the risk of cancer and the subsequent need for a prostate biopsy. This has the potential to limit prostate cancer overdiagnosis and subsequent overtreatment. mHealth apps are gaining traction in urological practice and are used by both practitioners and patients for a variety of purposes.
OBJECTIVE:
The impetus of the study was to design, develop, and assess a smartphone app for prostate cancer screening, based on the Rotterdam Prostate Cancer Risk Calculator (RPCRC).
METHODS:
The results of the Rotterdam arm of the European Randomized Study of Screening for Prostate Cancer (ERSPC) study were used to elaborate several algorithms that allowed the risk of prostate cancer to be estimated. A step-by-step workflow was established to ensure that depending on the available clinical information the most complete risk model of the RPCRC was used. The user interface was designed and then the app was developed as a native app for iOS. The usability of the app was assessed using the Post-Study System Usability Questionnaire (PSSUQ) developed by IBM, in a group of 92 participants comprising urologists, general practitioners, and medical students.
RESULTS:
A total of 11 questions were built into the app, and, depending on the answers, one of the different algorithms of the RPCRC could be used to predict the risk of prostate cancer and of clinically significant prostate cancer (Gleason score ≥7 and clinical stage >T2b). The system usefulness, information quality, and interface quality scores were high-92% (27.7/30), 87% (26.2/30), and 89% (13.4/15), respectively. No usability problems were identified.
CONCLUSIONS:
The RPCRC app is helpful in predicting the risk of prostate cancer and, even more importantly, clinically significant prostate cancer. Its algorithms have been externally validated before and the usability score shows the app's interface is well designed. Further usability testing is required in different populations to verify these results and ensure that it is easy to use, to warrant a broad appeal, and to provide better patient care.info:eu-repo/semantics/publishedVersio
- …