9,889 research outputs found

    Fuzzy logic as a decision-making support system for the indication of bariatric surgery based on an index (OBESINDEX) generated by the association between body fat and body mass index

    Get PDF
    Background: A Fuzzy Obesity Index (OBESINDEX) for use as an alternative in bariatric surgery indication (BSI) is presented. The search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. BMI (body mass index) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. This paper presents a new fuzzy mechanism for evaluating obesity by associating BMI with %BF that yields a fuzzy obesity index for obesity evaluation and treatment and allows building up a Fuzzy Decision Support System (FDSS) for BSI.

Methods: Seventy-two patients were evaluated for both BMI and %BF. These data are modified and treated as fuzzy sets. Afterwards, the BMI and %BF classes are aggregated yielding a new index (OBESINDEX) for input linguistic variable are considered the BMI and %BF, and as output linguistic variable is employed the OBESINDEX, an obesity classification with entirely new classes of obesity in the fuzzy context as well is used for BSI.

Results: There is a gradual, smooth obesity classification and BSI when using the proposed fuzzy obesity index when compared with other traditional methods for dealing with obesity.

Conclusion: The BMI is not adequate for surgical indication in all the conditions and fuzzy logic becomes an alternative for decision making in bariatric surgery indication based on the OBESINDEX

    Invasive monitoring of the clinical effects of high intra-abdominal pressure for insertion of the first trocar.

    Get PDF
    Background: To analyze the effects of transitory, high intra-abdominal pressure on clinical, hemodynamic, blood gas and metabolic parameters.

Methods: Sixty-seven laparoscopic patients were divided into groups P12 (n = 30, maximum intra-abdominal pressure of 12 mmHg) and P20 (n = 37, maximum intra-abdominal pressure of 20 mmHg). Through radial artery cannulation, mean arterial pressure (MAP) was assessed and blood gas analysis – pH, arterial oxygen tension (PaO2), arterial carbon dioxide tension (PaCO2), bicarbonate (HCO3) and base excess (BE) – was performed. These parameters were evaluated in both groups at time point zero, before CO2 insufflation; at time point one (TP1), when intra-abdominal pressure of 12 mmHg was reached in both groups; at time point two (TP2), 5 minutes after reaching intra-abdominal pressure of 12 mmHg in group P12 and of 20 mmHg in group P20; and at time point three (TP3), 10 minutes after reaching intra-abdominal pressure of 12 mmHg in group P12 and 10 minutes after TP1 in group P20, when intra-abdominal pressure decreased from 20 mmHg to 12 mmHg. Values out of the normal range or the occurrence of atypical phenomena suggestive of organic disease indicated clinical changes.

Results: Significant variations in MAP, pH, HCO3 and BE were observed in group P20; these changes, however, were within normal limits. Clinical changes were also within normal limits, and no pathological phenomena were observed.

Conclusions: Brief, intra-abdominal hypertension for the insertion first trocar insertion causes variations in MAP, pH, HCO3 and BE without adverse effects, and it may protect from iatrogenic injury

    Fuzzy logic as a decision-making support system for the indication of bariatric surgery based on an index (MAFOI) generated by the association between body fat and body mass index.

    Get PDF
    Background: A fuzzy obesity index (MAFOI) for use as an alternative to bariatric surgery indication (BSI) is presented. The search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. BMI (body mass index) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. This paper presents a new fuzzy mechanism for evaluating obesity by associating BMI with %BF that yields a fuzzy obesity index for obesity evaluation and treatment and allows building up a Fuzzy Decision Support System (FDSS) for BSI. Methods: Seventy-two patients were evaluated for both BMI and %BF. These data are modified and treated as fuzzy sets. Afterwards, the BMI and %BF classes are aggregated yielding a new index (MAFOI) for input linguistic variable are considered the BMI and %BF, and as output linguistic variable is employed the MAFOI, an obesity classification with entirely new classes of obesity in the fuzzy context as well as is used for BSI. Results: There is gradual, smooth obesity classification and BSI when using the proposed fuzzy obesity index when compared with other traditional methods for dealing with obesity.
Conclusion: The BMI is not adequate for surgical indication in all the conditions and fuzzy logic becomes an alternative for decision making in bariatric surgery indication based on the MAFOI

    Laboratory experiments on the generation of internal tidal beams over steep slopes

    Get PDF
    We designed a simple laboratory experiment to study internal tides generation. We consider a steep continental shelf, for which the internal tide is shown to be emitted from the critical point, which is clearly amphidromic. We also discuss the dependence of the width of the emitted beam on the local curvature of topography and on viscosity. Finally we derive the form of the resulting internal tidal beam by drawing an analogy with an oscillating cylinder in a static fluid

    Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective

    Get PDF
    Phosphate, as a cellular energy currency, essentially drives most biochemical reactions defining living organisms, and thus its homeostasis must be tightly regulated. Investigation into the role of inositol pyrophosphates (PP-IPs) has provided a novel perspective on the regulation of phosphate homeostasis. Recent data suggest that metabolic and signaling interplay between PP-IPs, ATP, and inorganic polyphosphate (polyP) influences and is influenced by cellular phosphate homeostasis. Different studies have demonstrated that the SPX protein domain is a key component of proteins involved in phosphate metabolism. How PP-IPs control some aspects of phosphate homeostasis has become clearer with the recently acquired crystal structures of SPX domains. We review here recent studies on eukaryote phosphate homeostasis and provide insights into future research

    Relationship of arterial and exhaled CO2 during elevated artificial pneumoperitoneum pressure for introduction of the first trocar.

    Get PDF
    The present study evaluated the correlation between arterial CO2 and exhaled CO2 during brief high-pressure pneumoperitoneum. Patients were randomly distributed into two groups: P12 group (n=30) received a maximum intraperitoneal pressure of 12mmHg, and P20 group (n=37) received a maximum intraperitoneal pressure of 20mmHg. Arterial CO2 was evaluated by radial arterial catheter and exhaled CO2 was measured by capnometry at the following time points: before insufflation, once intraperitoneal pressure reached 12mmHg , 5 minutes after intraperitoneal pressure reached 12mmHg for the P12 group or 20mmHg for the P20 group, and 10 minutes after intraperitoneal pressure reached 12mmHg for the P12 group or when intraperitoneal pressure had decreased from 20mmHg to 12mmHg, for the P20 group. During brief durations of very high intraperitoneal pressure (20mmHg), there was a strong correlation between arterial CO2 and exhaled CO2. Capnometry can be effectively used to monitor patients during transient increases in artificial pneumoperitoneum pressure

    Manejo reprodutivo: foco na taxa de reprodução.

    Get PDF
    A exploração racional dos ovinos de corte deve voltar-se para a produtividade dos animais e a rentabilidade econômica do sistema de produção. Contudo, não esquecendo o respeito ao equilíbrio agroecológico, ao impacto social quanto a geração e qualidade do emprego e ao não uso de mão de obra infantil. Também, a ética e a rastreabilidade ao longo de todo o processo produtivo. É muito importante o uso de inovações tecnológicas apropriadas aos diferentes sistemas de produção; o investimento na organização e na inovação na gestão da unidade produtiva em sintonia com a cadeia produtiva; a assistência técnica e a qualificação de mão de obra. Quando as condições físicas da unidade produtiva, o regime de manejo, o bem-estar animal, os manejos alimentar e da nutrição, o manejo da promoção da saúde, o genótipo e o mercado são favoráveis deve-se buscar a otimização do retorno econômico da atividade. Para tanto, o uso de técnicas reprodutivas como estação de monta, sincronização do estro e da ovulação, inseminação artificial, transferência de embriões, diagnóstico precoce de gestação e indução do parto é fundamental. A idade e o peso a primeira cobertura e ao primeiro parto, a fertilidade ao parto, a prolificidade, a sobrevivência e desenvolvimento das crias, o período de serviço, o período entre o parto e a concepção e o intervalo de partos são parâmetros muitos importantes para a eficiência reprodutiva. Com este foco, ressalta-se o impacto positivo que a taxa de reprodução exerce sobre o desfrute dos rebanhos e a rentabilidade da unidade produtiva.Apresentado no CONGRESSO NORTE NORDESTE DE REPRODUÇÃO ANIMAL, 7., 2014, Mossoró. Novos rumos para a reprodução animal no Norte e Nordeste do Brasil: anais. Mossoró, 2014

    A dynamic method for charging-up calculations: the case of GEM

    Full text link
    The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to simulate exactly the effective charge gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method uses a constant step for avalanches time evolution, very detailed, but slower to compute. The second method uses a dynamic step that improves the computing time. Good agreement between both methods was reached. Despite of comparison with experimental results shows that charging-up plays an important role in detectors operation, should not be the only responsible for the difference between simulated and measured effective gain, but explains the time evolution in the effective gain.Comment: Minor changes in grammatical statements and inclusion of some important information about experimental setup at section "Comparison with experimental results
    • …
    corecore