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Abstract

Phosphate, as a cellular energy currency, essentially drives most biochemical
reactions defining living organisms, thus its homeostasis must be tightly regul ated.
Investigation into the role of inositol pyrophosphates has provided a novel perspective on the
regulation of phosphate homeostasis. Recent data suggest a metabolic and signalling interplay
between inositol pyrophosphates, ATP and inorganic polyphosphate (polyP), that influences
and isinfluenced by cellular phosphate homeostasis. Different studies have demonstrated that
the SPX protein domain is a key component of proteinsinvolved in phosphate metabolism.
How inositol pyrophosphates control some aspects of phosphate homeostasi s has become
clearer with the recently acquired crystal structures of SPX domains. Here we review recent

studies on eukaryote phosphate homeostasis and provide insights into future research.

I mportance of studying phosphate homeostasis

The importance of phosphate (PO4>, P)) is perhaps underappreciated in biology: it is
not an overstatement to note that the large majority of biochemical reactionsinvolve
phosphate [1]. Only water participates in more reactions than adenosi ne triphosphate (ATP),
and the release of energy by the hydrolysis of ATP virtually driveslife asit currently is
known. However, what drives life is not the hydrolysis of the chemical bonds of adenine or
the ribose but the hydrolysis of the phosphoanhydride bonds between two phosphate groups.
For this reason, the three phosphates of an ATP molecule are the most important components.
Phosphate’ s tetrahedral molecular geometry gives the oxygen atoms the three-dimensional
structure to participate in hydrogen bonds, allowing phosphate to be a key component of
macromol ecules such as nucleic acids and phospholipids. Furthermore, being negatively
charged at physiological pH provides phosphate with signalling properties, including the
attachment of a phosphate group to a specific amino acid, thereby atering the overall charge
of the protein and affecting its functions [2]. In fulfilling these varied roles, phosphate
moieties circul ate between organic molecules, generally being passed along via
phosphotransfer reactions involving nucleotide triphosphates. Eventually the cascade of
events generates free phosphate that mitochondrial ATP synthases subsequently utilise to
regenerate ATP, completing the cycle. Consequently, phosphate homeostasisis closely
interwoven with energy metabolism. Given the fundamental functions played by phosphate in
molecular structure, signalling and as an energy currency, its cellular homeostasis must be
tightly regulated.



Investigation into eukaryotic phosphate homeostasis came aight in the * 90s with
several semina papers where the phosphate signal transduction (PHO) pathway of the
budding yeast, Saccharomyces cerevisiae, was defined (Box 1) [3, 4]. In fact Trendsin
Biochemical Sciences contributed to cementing the yeast PHO pathway with a most
influential 1996 review [5]. However, with the availability of complete genome sequences for
an ever-growing number of eukaryotic species, it became evident that the PHO pathway as
discovered in S cerevisiae is not evolutionarily conserved: many of its components,
including Pho81 and Pho4, have no clear homology in other genomes. These key components
are even absent in the related ascomycete, the fission yeast Schizosaccharomyces pombe,
where the phosphate-dependent transcriptional response is present but differs extensively
from the budding yeast model [6]. Thusit becomes important to define other regul atory
mechanisms able to supervise cellular phosphate homeostasis.

The association between SPX domains and phosphate metabolism

In today’ s post-genomic era help often comes from the systematic comparative
analysis of sequenced genomes. The identification of evolutionarily conserved homology
sequences defining specific ‘domains’ and their architecture in proteins through
bioinformatics has become the de facto standard in protein analysis, providing hints on
protein functions. One of these conserved regions, the SPX domain (Pfam: PF03105; see
Glossary), named after the yeast proteins Sygl and Pho81 and the mammalian Xprl, has
emerged in the past decade as a key region/signature of proteinsinvolved in regulating
aspects of phosphate metabolism [7].

The yeast S cerevisiae possesses ten proteins containing an SPX domain, all with N-
terminal localisation (Figure 1). In these proteins the SPX domain is associated with other
functional regions, defining six diverse groups. The SPX domain is present in four
components of the vacuolar transport complex (VTC) that is responsible for synthesis of
inorganic polyphosphate (polyP; see Glossary) in yeast [8-10], polyP isalinear polymer of
phosphate groups [11, 12] whose main function isto buffer free phosphate (see below). Other
proteins containing SPX domains are the low-affinity phosphate transporters Pho87 and
Pho90, in which SPX deletion reveaed an inhibitory function: the truncated transporters
allowed increased phosphate uptake [13]. Detailed analysis on the role of the SPX domainin
other yeast proteinsis missing, but virtually all other SPX domain-containing proteins have
been associated with phosphate metabolism. Thisis the case for the CDK inhibitor Pho81, for
the vacuol e phosphate exporter Pho91, and for the glycerophosphocholine phosphodiesterase
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Gdel, whose enzymatic activity generates glycerol-phosphate to be utilised as a phosphate
source [14]. The SPX domain is aso present in Sygl, which additionally containsan EXS
domain (see Glossary) (Figure 1). The EXS domain, named after the yeast protein Erd1,
human Xprl and yeast Sygl (Pfam: PF03124), contains several predicted transmembrane
helices [15] that likely form a channel for transferring phosphate. The association between
the N-terminus SPX domain and the C-terminus EXS is a common architecture also found in
plant phosphate exporters and in the human phosphate exporter, Xprl (see below and
Glossary) [16]. Therefore, the uncharacterised yeast Sygl proteinislikely to beadso a
phosphate exporter.

In recent years, great interest has been drawn to the expanded family of the plant SPX
domain-containing proteins (reviewed in [17, 18]). Phosphate is one of the main nutrientsin
plants, and agricultural ecosystems heavily rely on the application of phosphate fertilizers.
The benefits (high yield) and drawbacks (limited reserves of phosphate rock, pollution) that
arise from the usage of phosphate fertilizers have divided opinion over time[19]. This has led
to concerted global efforts to understand the molecular mechanisms of phosphate
homeostasisin plants. The aim is to create a more sustainable agriculture by improving
phosphate acquisition in crops. The Arabidopsis thaliana (thale cress) genome encodes 20
proteins containing SPX domains, whilerice (Oryza sativa) has 15 such proteins [17]. Here
we briefly review the A. thaliana literature. Most of these studies rely on genetic analysis of
mutants, and while very important and informative, they often lack the complementary
biochemical analysis to elucidate the mechanism of action of the SPX domain. Plant SPX-
containing proteins can be grouped into four subfamilies (Figure 1).

The simplest of these comprises proteins containing exclusively the SPX domain. It
has four membersin A. thaliana (SPX1-4). All but SPX4 expression are induced under
phosphate starvation in roots and/or shoots, and are localized to the nucleus. The individual
knockouts, grown under either high or low phosphate, do not show an apparent phenotype,
but SPX1 overexpression increased expression of some of the phosphate starvation-inducible
genes independent of the phosphate status [ 20, 21].

The second subfamily is SPX-RING (Really Interesting New Gene). One member of
this subfamily is the nitrogen limitation adaptation protein, NLA. It isan E3 ubiquitin ligase
that acts on, amongst others, PHT1 (Phosphate transporter 1, homologous to the yeast high
affinity phosphate transporter Pho84). PHT1 islocalized at the plasma membrane of root
cells, where it imports phosphate from the soil. Its activity istightly regulated, and when
phosphate is in abundance, PHT1 istargeted for degradation via ubiquitination by NLA [22].
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The SPX domain of NLA islikely to directly interact with PHT1 since it is sufficient for
plasma membrane targeting and interaction with PHT1[22].

The subfamily SPX-MFS (Mg or Facilitator Superfamily) includes transporters that
facilitate the translocation of small solutes, including phosphate [23-25]. In A. thaliana there
are three members (SPX-MSF1-3). The only characterized member is SPX-MFSL, aso
known as PHT5, which belongs to the class of vacuolar phosphate transporters [26]. The
SPX-MFS1 loss of function mutant has low vacuolar-to-cytoplasm phosphate ratio compared
to wild-type plants. Conversely, SPX-MFS1 overexpression leads to misregulation of
phosphate starvation-responsive genes and growth retardation as a consequence of phosphate
sequestration into vacuoles [26]. The exact function of the SPX domain in this protein is not
fully known.

Members of the subfamily SPX-EXS harbour both SPX and EXS domains (see
above). One of the most well-studied is PHO1 (Phosphate 1), a prototypical eukaryotic
phosphate exporter found primarily at the Golgi and trans-Golgi network [27]. It is known
that the SPX domain is not required for either Golgi/trans-Golgi targeting or for phosphate
export itself [28, 29], functions that are performed by the EXS region [30]. However, the
SPX domain is required for binding to PHOZ2, an ubiquitin-conjugating E2 enzyme that helps
in the degradation of PHOL for regulation of phosphate homeostasis[29]. Another SPX-EXS
subfamily member is SHB1 (Short Hypocotyl under BLUEL, also known as PHO1;H4) [31].
This protein is not directly associated with phosphate metabolism but instead is a putative
transcription co-activator in light signalling, with key regulatory functionsin seed
development. Overexpression of SHB1, or just its SPX domain, extendsits signalling activity
towards a broader spectrum of light wavelengths, suggesting that these signalling activities
might be directly modulated by SPX, perhaps by interaction with other domains [31].
Interestingly, alink between light sensing and phosphate uptake has been established in
algae, where the light-dark cycle directly affects phosphate uptake [32], raising the possibility
that these two environmental responses might share components.

While yeast and plants possess severa different SPX domain-containing protein
architectures, metazoan genomes only encode proteins with the SPX-EXS association (Figure
1). Inthe fly Drosophila melanogaster there are four similar proteins of unknown function
(gene names CG10481, CG10483, CG7536, CG2901). The nematode Caenorhabditis
el egans possesses one poorly characterized gene with SPX-EXS architecture (gene name
CELE_Y39A1A.22). The single Homo sapiens protein with the SPX-EXS architectureis
Xprl (Figure 1), originaly identified as the Xenotropic and Polytropic Retrovirus Receptor 1,
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which islocalised on the surface of many cell types[30]. While aninitial overexpression
study suggested that the SPX domain is not required for Xprl’'s phosphate export function
[16], arecent human genetic study revealed that several mutations localised within the SPX
domain of Xprl are responsible for primary familial brain calcification (PFBC), adisease
characterized by calcium phosphate deposits in the basal ganglia[33, 34]. Biochemical
analysis of SPX-mutated Xprl proteins revealed that these mutations do reduce phosphate
export, demonstrating aregulatory role for the SPX domain in controlling phosphate efflux
activity.

SPX structure reveals a thought-provoking inositol polyphosphate connection

All this literature unquestionably links the SPX domain to cellular phosphate
metabolism. However, only the recent acquisition of the crystal structure of several SPX
domains [35] allows us to appreciate how this region reads the phosphate cellular status. The
sequences defining the SPX domain are of variable length, ranging from 135 to >400 amino
acids [7], resulting in atripartite organization with three distinct homology regions of 30-40
amino acids (Figure 2). The resolved SPX structures revealed that the first homology region
isnormally organised into two small helices (a1l and a.2) while the two other homologous
regions form long helices (a3 and a4) that constitute the core of the structure. Two linker
regions of variable length and with low sequence homology connect these three segments.
The structural study included extra C-terminus sequence that resolves into two helices (a5
and a6) contributing to the overall organisational strength of the SPX domain (Figure 2) [35].
The original crystal revealed the presence of a sul phate group, which often replaces
phosphate during the crystallization process, that was coordinated by highly conserved amino
acids: atyrosine and alysinein helix a2, and alysinein helix a4, that together define the
Phosphate Binding Cluster (PBC). In addition, helix a4 was shown to possess three
evolutionarily conserved lysines that define a Lysine Surface Cluster (KSC) (Figure 2).
Together these two clusters, PBC and KSC, ultimately form alarge positively charged
surface. While there has been a great deal of speculation on the role of the SPX domain asa
direct phosphate sensor, experimental data demonstrating that phosphate specifically and
selectively binds to SPX domains were inconclusive [35]. The two PBC and KSC clusters
define alarge area that might be better suited for aligand larger than phosphate itself. In fact,
it was discovered that SPX domain ligands are the inositol polyphosphates (IPs; Box 2). The
crystal structures obtained when co-crystalising the SPX domain with 1Ps (inositol



hexakisphosphate or phytic acid; Box 2) revealed that |Ps is coordinated through hydrogen
bond interactions with the large basic surface of both the PBC and KSC clusters, which
together define the IPs binding site [35].

Diverse binding experiments have demonstrated that several yeast and plant SPX
domains bind with submicromolar affinity to I1Ps and to inositol pyrophosphates (PP-1Ps; see
Glossary) [35]. Mutagenesis of PBC and KSC key residues reduced the binding affinity. In
some circumstances the SPX domains show a high degree of binding specificity, asin the
case of the O. sativa SPX4/PHR2 complex, where the inositol pyrophosphate isomer 5PP-1Ps
(hereafter called IP7, see below) (Figure 3A,B), has abinding affinity one order of magnitude
higher than that of IPe. In other cases, as for the SPX domain of yeast Vtc2, the binding of 1Ps
and IP7 occurs with similar affinity. However, |P; was far better than 1Ps in stimulating polyP
synthesis using purified vacuoles. Mutagenesis of conserved amino acids within the SPX of
Vtc3 and Vtcd impairs polyP synthesis stimulation by IP; [35]. This gives us a coherent
explanation of the genetic evidence where the deletion of PP-1Ps biosynthetic pathways
(Figure 3A) leads to yeast with no or little polyP [36]. The ability of PP-IPsto control S.
cerevisiae polyP synthesis was originally reported by two studies. One used *!P-NMR to
determine yeast polyP levels [37] and linked the synthesis of polyP to a specific PP-1Ps, PP-
IP4, which is generated by the pyrophosphorylation of inositol pentakisphosphate (1Ps)
(Figure 3A). The second study biochemically extracted and resolved polyP, by gel
electrophoresis, from a complete array of inositol phosphate kinase single and double
mutants. This study established that the presence of polyP in yeast depends on the presence of
any kind of PP-1Ps[36], while the presence of IPs or 1Ps does not correlate with polyP
synthesis.

Undoubtedly, the regulation of SPX domain by PP-IPs offers a new perspective on
cell signalling. However, mechanistically, it is not yet known how PP-1Ps binding to SPX
domain is transduced to the protein. It is possible that intramolecular conformational changes
activate the Vtc4 catalytic domain. However, in other contexts PP-1Ps binding could inhibit
protein function. For example the PP-1Ps activation of Vtc4 and the consequent accumulation
of polyP into the vacuole should be complemented by PP-IPs-mediated inhibition of the
vacuol e phosphate exporter Pho91. Moreover, the binding of PP-1Psto SPX domains might
not directly function as an activator/inhibitor but might work as a molecular glue regulating
protein-protein interactions. This mode of action has been observed for severa proteins: |Ps
bind in a pocket between histone deacetylases (HDAC) and co-repressor proteins [38]
regulating their interaction; similarly IPs bind to TIR1 and COI1-JAZ, the receptor for the



plant hormone auxin [39] and jasmonate, respectively [40]. Different SPX domains may
sense different |Ps/PP-1Ps; however, in vitro |Ps/PP-1Ps binding experiments are difficult due
to the exceptionally high charge density of these molecules. Thus studying in vivo IP/PP-IP
selectivity for SPX domains, while technically challenging, will be essential to properly
elucidate SPX domain-regulated events, and to fully appreciate the physiological importance
of this domain and the exact roles played by specific |PS/PP-1Ps.

Phosphate altersinositol pyrophosphate metabolism

Inositol pyrophosphates, PP-1Ps, are an interesting but understudied class of signalling
molecules that, as the name suggests, possess one or more pyrophosphate moieties (Figure
3B, Box 2). The presence of highly energetic phosphoanhydride bondsis just one of the
distinctive features of these molecules. They have arespectable signalling pedigree [41] as
PP-1Ps belong to an important family of cellular messengers that includes the calcium release
factor IP3[42]. In yeast, these molecules are synthesized by sequential phosphorylation of 1P;
generated by phospholipase C (Figure 3A) [43]. Inositol pyrophosphates are ubiquitously
present in eukaryotes, and, remarkably for organic molecules, often contain more phosphate
groups than carbons; for example IP7 possesses seven phosphates attached to the six carbon
inositol ring (Figure 3B). Besides binding to proteins, PP-1Ps can induce the protein post-
translational modification protein pyrophosphorylation. In this modification, hydrolysis of the
pyrophosphate moiety drives the transfer of the 3-phosphate to a pre-phosphorylated serine
residue, forming a pyrophosphoserine [44, 45]. Inositol pyrophosphates appear to regulate a
wide range of cell biological processes, and we refer the interested reader to recent reviews
[46-48]. Here we highlight PP-1Ps importance in the regulation of cellular phosphate
homeostasi s and basic metabolism.

Inositol pyrophosphates have been defined as * metabolic messengers' [49], sensing
the metabolic or energetic status of the cell [48, 50]. The enzymatic synthesis of IP; istightly
linked to the cellular energetic status since the inositol hexakisphosphate kinases (IP6K's, see
Glossary) that are responsible for the bulk of IP; synthesis have aKm for ATP in the
milimolar range [51, 52]. Thus, fluctuationsin cellular ATP level are transduced into changes
in 1Pz concentration. The availability of cellular phosphate, which affects ATP synthesis, will
therefore also alter the cellular level of 1P;. Indeed two independent reports have observed
that phosphate starvation in yeast induces a specific decrease in IP; levels[35, 36]. These
fluctuationsin 1P7 can signal the cellular phosphate status to a downstream signalling cascade



that, at least in part, islikely transduced by SPX domain-containing proteins. At the present
time, apart from the yeast VTC complex, thereis just one other study indicating that 1P,
regulates the function of an SPX containing protein. However, in this study the ability of the
IP;7 isomer 1PP-1Ps, synthesized by a different class of enzymes, the PPIP5KSs, to regulate
Pho81 interaction with Pho85-Pho80 was not attributed to the SPX domain [53]. Furthermore
this study shows that IP; increases after phosphate starvation [54], which isin contrast with
the current view and analysis [35, 36]. Apart from the yeast experimental model, there are no
reported studies in other organisms in which altering the phosphate availability modul ates
PP-1Ps cellular level.

Inositol pyrophosphates as metabolic regulator s

In humans, phosphate comprises 1% of the total body weight. Phosphate is essential
for the mineralization of the bone; indeed 85% of phosphate localises in bone and teeth,
complexed with calcium in the form of hydroxyapatite crystals or as amorphous calcium
phosphate. Organismal phosphate homeostasisis primarily regulated, by different organs and
at multiple levels, by vitamin D, parathyroid hormone, and fibroblast growth factor-23 (FGF-
23) [55, 56]. The fact that alterations of human phosphate metabolism are implicated in
several pathological states makes this topic very important. In depth discussing of organismal
phosphate regul ation is beyond the scope of the current essay. We will refer only to a
genome-wide study aimed at identifying genetic variations associated with changes in human
serum phosphate concentrations [57]. This study identified two independent single nucleotide
polymorphisms (SNPs) at locus 6p21.31, localised within the first intron of one of the three
enzymes responsible for 1P7 synthesis: IP6K3 [57, 58]. While no functional studies were
performed to understand the effect of these SNPs, their localization suggests that they might
affect IP6K 3 transcription.

The IP6K2 gene was cloned almost 20 years ago, while searching for a novel
mammalian intestinal phosphate transporter and was identified as PiUS (Phosphate inorganic
Uptake Stimulator) [59]. When PIUS RNA was injected into Xenopus oocytes, it stimulated
the cellular uptake of radioactive phosphate. A few years later it was discovered that PiUS
was capable of converting IPs to 1P7 and renamed IP6K 2 [52, 60]. Importantly, this ability of
PP-IPs to control the uptake of phosphate is conserved in yeast. The IP6K null yeast kcslA
(see Glossary, Figure 3A), with undetectable levels of 1P7, exhibits a reduced uptake of
phosphate from the culture medium [44]. While these studies clearly link PP-IPs with



phosphate entry into cells, it remains to be investigated if IP; regulates phosphate
importers/exporters through their SPX domains or by other mechanisms. It is likely that
injecting Xenopus oocytes with PIUS/IP6K2 mRNA would lead to an increase in IP;
synthesis. The observed increase in phosphate uptake that was originally reported for
PiUS/IPEK 2 could be explained by an inhibitory effect of 1P; on Xprl, the only SPX domain-
containing protein present in the frog genome (NP_001086930), homologue of the human
phosphate exporter. Likewise, the low phosphate concentration in serum associated with
specific SNPs could be aresult of 1P action on Xprl when IP6K 3 transcription is altered.
However, until the regulation by 1P, of the Xprl protein of either human or frog originis
properly studied, these arguments remain speculative.

The presence of alone SPX domain-containing protein in metazoan genomes, Xprl,
is puzzling. Metazoan complexity would certainly require a multifaceted cellular phosphate
homeostasis. For this reason complex organisms must possess alternative regulatory
mechanisms that go beyond the regulation by PP-IPs of the single SPX domain-containing
protein. Besides acting as SPX domain regulators, PP-1Ps could play amajor rolein
phosphate homeostasis due to their ability to control primary metabolism. To synthesize ATP
the mitochondrial ATP synthase requires a proton gradient, ADP, and phosphate. In both
keslA yeast and in mouse embryonic fibroblasts derived from ip6k1 knockout mice (ip6k1™),
two systems with scarce PP-1Ps synthesis, there is aremarkable increasein ATP levels even
if the mitochondria are found to be dysfunctional [61]. Mitochondrial metabolic dysfunction
has also been reported for the kes1A strain of the pathogenic basidiomycete Cryptococcus
neoformans [62]. Mitochondria, by being able to pump protons, are an important component
of the emerging “metabolic” signal mediated by cytosolic pH. A genome-wide screening of
S cerevisiae knockout mutants reveal ed that kcs1A has one of the lowest cytosolic pH and its
metabolic rateis virtually unaffected by lowering medium pH [63]. With thisin mind, the
altered mitochondria functionality of ip6kl’- mice might explain the inability of these mice to
become obese [64]. Further evidence of the evolutionarily conserved ability of PP-1Ps to
regul ate primary metabolism comes from the recent metabolomics analysis of the unicellular
green alga Chlamydomonas reinhardtii, which demonstrated the importance of PP-IPsin
regulating tricarboxylic acid (TCA) cycle and fatty acid synthesis[65] Interestingly, kcslA
yeast, while possessing an adenylate energy charge close to 1, also have an absolute increase
in the three adenine nucleotides (AMP, ADP and ATP) [61]. The nucleotide pools might
therefore play an important, but poorly characterised, role in buffering cellular phosphate.
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ATP and GTP, which are present at milimolar concentrations, have three phosphate groups
each and thus small fluctuationsin their cellular levels might substantially alter the cytosolic
levels of free phosphate. The signalling as well as metabolic crosstalk between PP-IPs,
nucleotide triphosphate and polyP, while still emerging, will be fundamental to appreciate the

role of phosphate on cell homeostasis.

I nor ganic polyphosphate as a eukaryote phosphate buffer

A systematic screening of yeast mutants for polyP levels revealed an interdependence
with primary metabolism [66]. This linear phosphate polymer (Figure 3C) contains four to
several hundred phosphate residues linked by “high-energy” phosphoanhydride bonds [11,
12]. The abiotic synthesis of polyP by volcanic activity has given rise to an exciting theory:
that polyP hydrolysis could have driven early metabolism and preceded ATP as energetic
molecule [67]. PolyP is ubiquitously present in al living organisms from bacteriato
mammals and has many specific functions. These include: regulation of pathogenicity of
human parasites [68]; it functions as a chaperone, helping protein folding [69]; and it drives a
new post-trandational protein modification, polyphosphorylation, in which polyPis
covaently attached to alysine residue [70]. However, intrinsic to its polymeric nature (Figure
3C), polyP also represents an intracellular phosphate buffer since its synthesis and
degradation consumes and rel eases free phosphate. Furthermore, polyP also functions as a
chelator of metal ions, thereby regulating cellular cation homeostasis. Clearly, understanding
the regulation of polyP metabolism isinstrumental to appreciating phosphate homeostasis.

Inorganic polyphosphate metabolism isin yeast regulated by PP-1Ps, that activate the
polyP-synthesizing Vtc4 by binding to its SPX domain ([36] see above). However, it is not
completely clear if this regulation goes beyond the yeast experimental model. Vtca-like
proteins have been identified in some parasites of the Trypanosomatida order. In
Trypanosoma brucei, a ThVtc4 conditional knockout is considerably less virulent in mice and
shows a 35% decreasein short chain polyP species with no significant changes in the long
chain polyP [71]. Therefore another uncharacterized enzyme able to synthesize polyP in T.
brucei must exist.

Besides the Vtc4-like enzymes, polyphosphate kinase (PPK 1), an enzyme of bacterial
origin, has been characterized in the social amoeba Dictyostelium discoideum. This PPK1
enzyme, unlike Vtc4, lacks a SPX domain and so is not likely directly activated by PP-1Ps.
Therefore, it remains to be seen if PP-1Ps somehow regulate polyP synthesisin D.
discoideum. A recent report suggests that the IP6K null amoeba (ip6ka), with low level of
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PP-1Ps[72], has normal levels of polyP during vegetative growth but fails to properly
accumulate polyP during development [ 73]. However, these data are in contrast with our own
anaysis where we observed normal polyP levelsin vegetative cells and normal accumulation
throughout development in an ip6ka knockout line (Thomas Livermore, PhD thesis,
University College London, 2016). This discrepancy is likely due to the different assays used
to quantify polyP: namely the direct visualisation of polyP on gel, or by measuring polyP-
induced DAPI (4',6-Diamidino-2-Phenylindole) red fluorescence shift [74]. The latter assay
has pitfalls as other phosphate-rich molecules, such as IPs[75] and amorphous calcium-
phosphate [ 76], induce the same type of fluorescence. Thus, unlike in yeast, the direct control
of polyP synthesis by PP-1Psis not seen in D. discoideum.

However, in mammalian cells, the DAPI-based assay was complemented by other
indirect lines of investigation suggesting an interdependence between PP-1Ps synthesis and
polyP cellular accumulation [77]. Because mammals lack both Vtc4 and PPK1 enzymes, the
pathways of polyP synthesisin higher eukaryotes are yet to be discovered, which preventsin
depth studies on polyP regulation by PP-1Ps and on the effects of polyP synthesis on
phosphate homeostasis and primary metabolism.

Studies of D. discoideum polyP metabolism revealed a dramatic accumulation, more
than one hundred fold, of polyP during development [78]. This polyP accumulation in the
spores resembles 1Ps build-up in plant seeds [79]. Since IPs isimportant in supplying
phosphate and cations during plant seed germination [80, 81], polyP could play similar roles
during amoeba spore germination. In fact, the ppk1 null amoeba, which has undetectable
levels of polyP and is unable to accumulate polyP during development, showed reduced
germination efficiency. Analysis of the ppk1 null amoeba has allowed us to further
demonstrate the interdependence between polyP and cellular energetics. This strain shows
reduced genera fitness and low growth rate which can be explained by a substantial decrease
incellular ATP level in vegetative growing cells. Importantly, the absence of an increasein
polyP during development in ppk1l mutant cellsis balanced by an increase of both ATP and
PP-1Ps [78]. Thus D. discoideum data are supportive of amodel in which there is afunctional
interplay between PP-1Ps, ATP and polyP (Figure 4).

Concluding Remarks

The recent identification of the SPX domain as a PP-1Ps sensor offers unique

opportunities to understand how PP-IPs signalling works and how it regul ates phosphate
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homeostasis. However, further work is required to fully appreciate the importance of such
regulatory mechanisms (see Outstanding Questions).

Cellular phosphate homeostasis is obviously closely related to bivalent cation
metabolism. Thus studying the metabolism and turnover of phosphate-rich molecules has far-
reaching implications, sinceit will not only affect free phosphate levels but also the
physiology of important cations such as magnesium and calcium. The PP-1Ps ability to
influence phosphate homeostasi s could have represented one of theinitial features that lead to
the evolution of the complex 1Ps-regulated calcium signalling pathway present in metazoans
[82]. Several lines of evidence have suggested that in today’ s eukaryotic cellsthereisa
reciprocal relationship between PP-1Ps, ATP and polyP. Their relative abundance, synthesis
and reciprocal regulation are connected, affecting cellular phosphate homeostasis and thus
primary metabolism (Figure 4). This hypothesisis based on primary data collected in the
yeast and amoeba experimental models, and requires further experimental evidence to be
validated in other organisms. However, studying the relationship between 1P-IPs, ATP and
polyP has given us, and will certainly continue to give us, important insights on the central
mechanisms of cell regulation.

Glossary

EXS domain: Protein region named after the ERDL/XPRL1/SY G1 proteins that is predicted to
contain several transmembrane helices forming a channel to transport phosphate.

Inositol hexakisphosphate kinases (I P6K s/K cs1): Enzymes primarily responsible for the
conversion of IPs (inositol hexakisphosphate) to the isomer 5PP-1Ps of 1P (diphosphoinositol
pentakisphosphate). In mammalian cells there are three IP6K enzymes, 1P6K 1-2-3, whereas
in yeast thereis asingle enzyme called Kcsl.

I nor ganic polyphosphate (polyP): A linear polymer of four to hundreds of phosphate
residues linked by high-energy phosphoanhydride bonds, ubiquitously present in living
organisms.

Inositol polyphosphates (1 Ps): Refers to the family of water soluble inositol phosphates,
from inositol monophosphate (1P) to the fully phosphorylated inositol hexakisphosphate
(IPs). In the context of this review we exclude from this nomenclature the inositol

pyrophosphates.
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Inositol pyrophosphates (PP-IPs): High-energy molecules comprising seven (1P7) or eight
(IPs) phosphate groups attached to the six-carbon myo-inositol ring, therefore possessing one
or two pyrophosphate moieties. The correct nomenclature is diphosphoinositol-
pentakisphosphate for |P7, aso called PP-1Ps; and diphosphoinositol -tetrakisphosphate for
|Ps, also called (PP)2-1Ps. These molecules are present in all eukaryotic cells and with
signalling functions that are starting to be understood.

SPX domain: A ~180-~400 amino acid long domain named after the SY G1/Pho81/XPR1
proteins. This domain is mostly found at the amino terminus of proteins primarily involved in
the regulation of phosphate metabolism.

Xpr 1: Multi-pass membrane protein with an N-terminal SPX domain and a C-terminal EXS-
domain. Originally identified as the cell-surface receptor for xenotropic and pol ytropic
murine leukemiaretroviruses (X- and P-MLV), hence the name Xenotropic and Polytropic
Retrovirus Receptor 1, it was later found to be involved in phosphate homeostasis by

mediating phosphate export from the cell.

Acknowledgments

We thank M. Wilson and Y. Desfougeres for suggestions and reading of the manuscript. This
work was supported by the Medical Research Council (MRC) core support to the MRC/UCL
Laboratory for Molecular Cell Biology University Unit (MC_UU_1201814).

Box 1. PHO regulon of Saccharomyces cerevisiae

In this yeast the transcription factor Pho4 plays akey rolein the PHO regulon. In phosphate-
rich conditions, Pho4 is phosphorylated by the cyclin-CDK (cyclin dependent kinase)
complex Pho80-Pho85, that isin turn regul ated by the CDK inhibitor Pho81. Phosphorylated
Pho4 localises to the cytoplasm. Conversely, under phosphate starvation Pho4 is
dephosphorylated and transl ocates to the nucleus, where it induces the transcription of a set
of genes, encoding transporters and phosphatases, responsible for acquiring phosphate from

the environment.

Box 2: Inositol polyphosphates
Inositol polyphosphates (1Ps) are highly phosphorylated molecules containing a 6-carbon
inositol ring that can be sequentially phosphorylated (Figure 3A). In S. cerevisiae the
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synthesis of these molecules starts with the hydrolysis of the membrane phosphoinositide
Pl(4,5)P2 (PIP2) by Picl, generating 1(1,4,5)Ps (1Ps). IPs is converted to |P4 by two enzymes,
the IPs-3Kinase (IPz-3K) or by the inositol polyphosphate multikinase Arg82, which aso
converts P4 to IPs. The inositol pentakisphosphate kinase 1pk1 phosphorylates IPs to the fully
phosphorylated and most abundant of the inositol species, 1Ps (inositol hexakisphosphate or
phytic acid). Despite being fully phosphorylated, 1Ps can still be metabolized to generate the
inositol pyrophosphate (PP-1P) IP7, a molecule with one pyrophosphate moiety, by inositol
hexakisphosphate kinase Kcsl. IPgis the most phosphorylated of the inositol species
described to date and is generated through the phosphorylation of |P; by the
diphosphoinositol pentakisphosphate kinase Vipl (PPIP5KSs).
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FiguresLegend

Figure 1. Architecture of proteins containing SPX domain of yeast, plant and human.
The domain architecture of SPX domain (PF03105)-containing proteins are depicted; these

were determined using the Pfam protein families database website (http://pfam.xfam.org)

[83]. In some cases, manual analysis of the sequence was performed to identify the full extent
of the SPX regions. This was necessary when Pfam analysis revealed a partial or fragmented
SPX region, since the SPX domain is defined by three regions of homology intercal ated by
non-homol ogous sequences (see Figure 2). When more than one protein possesses the
indicated domain organization, the structure of the first protein is portrayed. Thisanalysis
revealed that the always N-terminus localised SPX domain can be associated with: the VTC
domain (PF09359) that, in Vtc4, is catal ytically responsible for polyP synthesis; the DUF202
domain (PF02656) that defines the putative membrane region; the ankyrin repeat, ANK
(PF00023), adomain usually involved in protein—protein interactions; the CitMHS domain
(PF03600) of the citrate transporter, similar to the sodium:sulfate symporter, representing the
transmembrane region of the phosphate transporter; the GDPD domain (PF03009) from the
glycerophosphoryl diester phosphodiesterase family, involved in lipid metabolism; the EXS
domain (PF03124), aregion containing several predicted transmembrane helixes that likely
form a phosphate channel; the Really Interesting New Gene or RING domain (PF00097),
representing a zinc finger-type structural domain; and the major facilitator superfamily MFS
domain (CL0O015), representing one of the best characterised families of membrane

transporters.

Figure 2. SPX domain organization.

SPX domain sequence alignments from four S. cerevisiae proteins (Vtc2, Pho90, Pho91,
Sygl), four A. thaliana proteins (SPX1, PHOL, NLA, SPX-MSF1), and one H. sapiens
(Xprl). These aignments include three homology regions (green boxes) as defined by the
SPX domain Pfam entry PF03105, and an additional C-terminus amino acid sequence, as
defined in the construct prepared to crystallise Vtc2 [35]. This analysis was performed using
the Cobalt program (constraint-based multiple alignment tool) from the NCBI web page
(https://www.nchi.nlm.nih.gov/tool s/cobalt/). The amino acid columnsin red indicate highly

conserved amino acid positions (Cobalt conservation setting, 3 bits). The yellow boxes define
the six helical regions as identified in the resolved Vtc2 structure [35]. While the first SPX
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homology region is defined by two alpha helices, homologous domains two and three
substantially overlap with only alpha helix three and four, respectively. The position of the
three amino acids defining the Phosphate Binding Cluster, one tyrosine (Y) and one lysine
(K), localised on the second apha helix, and one lysine localised in aphahelix four are
highlighted in bold and by an asterisk (*). Similarly highlighted in bold and by the hash
symbol (#) are the three lysine residues on the fourth alpha helix that define the Lysine-
Binding Cluster. The resolved SPX domain crystal structures revealed that these two clusters,
which together define the inositol phosphate binding region, are in the vicinity of each other
as represented in the topology diagram of the Vtc2 structure (left).

Figure 3. Inositol pyrophosphate biosynthetic pathway and | Pz and polyP structures

A simplified PP-1Ps biosynthetic pathway is depicted in (A). The yeast enzymes are
represented in blue while the respective mammalian enzymes arelisted inred. In S,
cerevisiae the synthesis of PP-1Ps begins with the hydrolysis of the membrane
phosphoinositide PI(4,5)P- (PIP2) by Plcl (homologous to mammalian Phospholipase C;
PLC), generating 1(1,4,5)Ps (IPs). Thisis converted to IP4 by the IPs-3Kinase (IPs-3K) or by
the inositol polyphosphate multikinase Arg82 (IPMK in mammals), which also converts P4
to IPs. Thisis subsequently metabolised by the inositol pentakisphosphate kinase 1pk1
(homologous to IP5K). The fully phosphorylated | Ps is metabolized by inositol
hexakisphosphate kinase Kcsl (homologous to |P6Ks) to generate I1P; that can be further
phosphorylated to IPg by the diphosphoinositol pentakisphosphate kinase Vipl (PPIP5KS).
Additionally, inositol pentakisphosphate, IPs, can be metabolised by the IP6K enzymesto the
inositol pyrophosphate PP-1P4. The structure of the prototypical inositol pyrophosphate IP7 is
represented in (B). This particular isomer 5PP-1Ps is synthesized by the IP6Ks [84] while the
PPIP5K s are able to generate a pyrophosphate at position one [85]. In (C) the structure of
inorganic polyphosphate (polyP) is represented, where ‘n’ can have avaue of two to several
hundred. The carbon is represented with white, the phosphorus with red, and the oxygen with

green circles respectively.

Figure 4. Proposed model for PP-1Ps, ATP and polyP interplay.
The three phosphate rich molecules ATP, polyP and PP-1Ps may regulate their relative
abundances through signalling events (black arrows). One such event is the ability of PP-1Ps
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to stimulate yeast polyP synthesis by binding the SPX domain of Vtc4 [35]. The polymeric
polyP can itself participate in signalling events regulating ATP and PP-IPs through its protein
chaperone ability [69], and/or by driving lysine polyphosphorylation [70]. The ability of PP-
IPsto regulate ATP levels [61] could represent another regulatory event. Between these
molecules, aside from these signalling actions, there are metabolic interconnections (coloured
dashed arrows). Free phosphate (P;) is obvioudly at the centre of such flux of phosphate
groups. Thus, to fully appreciate phosphate homeostasi s and metabolism regul ation we must
understand the PP-1Ps, ATP and polyP relationships more deeply.
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