8 research outputs found

    Genetic Mapping and Detection of Quantitative Trait Loci

    No full text
    UMR AGAP - équipe AFEF - Architecture et fonctionnement des espèces fruitièresOlive tree is a long-living woody species with similar genomic and phenotypic constraints to other perennial fruit crops. However, compared to apple, grape, and peach, genomic investigations for designing innovative breeding strategies are still limited to only preliminary research in this species. In this chapter, we aim to describe the studies on genetic mapping and underline the most promising investigations and initiatives to build a Mediterranean network suitable for establishing robust marker-trait associations through QTL mapping and association studies. These tools should serve to finally implement new breeding programs driven by marker-assisted breeding

    The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles

    No full text
    AGAP : équipe DAVEMThe self-incompatibility type is of key importance to understanding pollination in orchards, because most olive cultivars are partially self-incompatible and thus require pollinizers to ensure fruit set. The gametophytic model has been advocated to function in the olive, but no allele pair has been attributed to any variety. The GSI model failed in most combinations to explain fruit set. Olive growers must screen experimentally and empirically to look for inter-compatible pair-wise combinations of varieties for optimum pollination. The sporophytic model, with given dominance relationships for six S-alleles matches 98 % of the experimental data of the two sets investigated. We propose a method to analyze data from controlled crosses between olive cultivars applied to two experiments for varieties crossed in a diallel design. Furthermore, the dominance between the S-allele pair allows rational prediction of olive variety self-incompatibility levels. The S-allele pairs were unraveled for more than 60 cultivars. To go further, crosses between reference varieties-those in which the S-allele pair was unraveled-and varieties under experimentation (VarE) with an unknown S-allele pair will enable an increase in knowledge and the choice of the best pollinizers in silico. Nevertheless, we pose outstanding questions in orchards where open-pollination efficiency with varieties harboring the R2R3, R1R3, R1R5, or R3R5 pairs. These S-allele pairs require pollen grains without R2 or R3 , R1 or R3, and R3 or R5 determinants. Such pollinizer varieties are not abundant in France and Italy, and this questions whether their spread is sufficient for optimal pollination of main varieties
    corecore