2,942 research outputs found

    A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years

    Get PDF
    Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.Peer reviewedPublisher PD

    Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ.

    Get PDF
    Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+δ (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of pCDW ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below pCDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates

    Evaluation of White Clover Breeding Lines in the Australasian Region

    Get PDF
    The accuracy of predicting breeding line performance across target environments is a significant criterion in the development of cultivars with broad or specific adaptation. This paper characterises the type and magnitude of genotype-by-environment (GE) interactions estimated from a multi-site white clover (Trifolium repens L.) breeding line evaluation trial conducted across sites in New Zealand and Australia

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200

    Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ

    Get PDF
    Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl(2)Ba(2)CuO(6+δ) (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of p(CDW) ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below p(CDW). Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    Relationship between a Weighted Multi-Gene Algorithm and Blood Pressure Control in Hypertension

    Get PDF
    Hypertension (HTN) is a complex disease with interactions among multiple organ systems, including the heart, vasculature, and kidney with a strong heritable component. Despite the multifactorial nature of HTN, no clinical guidelines utilize a multi-gene approach to guide blood pressure (BP) therapy. Non-smokers with a family history of HTN were included in the analysis (n = 384; age = 61.0 ± 0.9, 11% non-white). A total of 17 functional genotypes were weighted according to the previous effect size in the literature and entered into an algorithm. Pharmacotherapy was ranked from 1⁻4 as most to least likely to respond based on the algorithmic assessment of individual patient's genotypes. Three-years of data were assessed at six-month intervals for BP and medication history. There was no difference in BP at diagnosis between groups matching the top drug recommendation using the multi-gene weighted algorithm (n = 92) vs. those who did not match (n = 292). However, from diagnosis to nadir, patients who matched the primary recommendation had a significantly greater drop in BP when compared to patients who did not. Further, the difference between diagnosis to current 1-year average BP was lower in the group that matched the top recommendation. These data suggest an association between a weighted multi-gene algorithm on the BP response to pharmacotherapy.Geneticure Inc.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A Model of Fermion Masses and Flavor Mixings with Family Symmetry SU(3)U(1)SU(3)\otimes U(1)

    Full text link
    The family symmetry SU(3)U(1)SU(3)\otimes U(1) is proposed to solve flavor problems about fermion masses and flavor mixings. It's breaking is implemented by some flavon fields at the high-energy scale. In addition a discrete group Z2Z_{2} is introduced to generate tiny neutrino masses, which is broken by a real singlet scalar field at the middle-energy scale. The low-energy effective theory is elegantly obtained after all of super-heavy fermions are integrated out and decoupling. All the fermion mass matrices are regularly characterized by four fundamental matrices and thirteen parameters. The model can perfectly fit and account for all the current experimental data about the fermion masses and flavor mixings, in particular, it finely predicts the first generation quark masses and the values of θ13l\theta^{\,l}_{13} and JCPlJ_{CP}^{\,l} in neutrino physics. All of the results are promising to be tested in the future experiments.Comment: 14 pages, 1 figure, to make a few of corrections to the old version. arXiv admin note: substantial text overlap with arXiv:1011.457

    Cyprus' image—a sun and sea destination—as a detrimental factor to seasonal fluctuations. Exploration into motivational factors for holidaying in Cyprus

    Get PDF
    Cyprus is established as a summer destination. To aid the destination in developing its winter season as well, this research uses a qualitative inductive approach to explore the tourists’ current image of the island and their motivations of visiting it. The research indicates that the current image, which essentially portrays Cyprus as a sun-and-sea destination is thought to dissuade tourists from perceiving the island as a year-round destination. Nonetheless, increasing the pull factors of the destination through the development of unique special interest products can help in extending the tourism season as well as broaden its narrow image

    Solar Wind and its Evolution

    Get PDF
    By using our previous results of magnetohydrodynamical simulations for the solar wind from open flux tubes, I discuss how the solar wind in the past is different from the current solar wind. The simulations are performed in fixed one-dimensional super-radially open magnetic flux tubes by inputing various types of fluctuations from the photosphere, which automatically determines solar wind properties in a forward manner. The three important parameters which determine physical properties of the solar wind are surface fluctuation, magnetic field strengths, and the configuration of magnetic flux tubes. Adjusting these parameters to the sun at earlier times in a qualitative sense, I infer that the quasi-steady-state component of the solar wind in the past was denser and slightly slower if the effect of the magneto-centrifugal force is not significant. I also discuss effects of magneto-centrifugal force and roles of coronal mass ejections.Comment: 6 pages, 1 figure, Earth, Planets, & Space in press (based on 5th Alfven Conference) correction of discussion on a related pape
    corecore