30 research outputs found

    Citizen science for observing and understanding the Earth

    Get PDF
    Citizen Science, or the participation of non-professional scientists in a scientific project, has a long history—in many ways, the modern scientific revolution is thanks to the effort of citizen scientists. Like science itself, citizen science is influenced by technological and societal advances, such as the rapid increase in levels of education during the latter part of the twentieth century, or the very recent growth of the bidirectional social web (Web 2.0), cloud services and smartphones. These transitions have ushered in, over the past decade, a rapid growth in the involvement of many millions of people in data collection and analysis of information as part of scientific projects. This chapter provides an overview of the field of citizen science and its contribution to the observation of the Earth, often not through remote sensing but a much closer relationship with the local environment. The chapter suggests that, together with remote Earth Observations, citizen science can play a critical role in understanding and addressing local and global challenges

    Morphology of powerful suction organs from blepharicerid larvae living in raging torrents

    Get PDF
    BackgroundSuction organs provide powerful yet dynamic attachments for many aquatic animals, including octopus, squid, remora, and clingfish. While the functional morphology of suction organs from some cephalopods and fishes has been investigated in detail, there are only few studies on such attachment devices in insects. Here we characterise the morphology and ultrastructure of the suction attachment organs of net-winged midge larvae (genus Liponeura; Diptera: Blephariceridae) – aquatic insects that live on rocks in rapid alpine waterways where flow speeds can reach 3 m s− 1 – using scanning electron microscopy, confocal laser scanning microscopy, and X-ray computed micro-tomography (micro-CT). Furthermore, we study the function of these organs in vivo using interference reflection microscopy.ResultsWe identified structural adaptations important for the function of the suction attachment organs in L. cinerascens and L. cordata. First, a dense array of spine-like microtrichia covering each suction disc comes into contact with the substrate upon attachment, analogous to hairy structures on suction organs from octopus, clingfish, and remora fish. These spine-like microtrichia may contribute to the seal and provide increased shear force resistance in high-drag environments. Second, specialised rim microtrichia at the suction disc periphery were found to form a continuous ring in close contact and may serve as a seal on a variety of surfaces. Third, a V-shaped cut on the suction disc (“V-notch“) is actively opened via two cuticular apodemes inserting on its flanks. The apodemes are attached to dedicated V-notch opening muscles, thereby providing a unique detachment mechanism. The complex cuticular design of the suction organs, along with specialised muscles that attach to them, allows blepharicerid larvae to generate powerful attachments which can withstand strong hydrodynamic forces and quickly detach for locomotion.ConclusionThe suction organs from Liponeura are underwater attachment devices specialised for resisting extremely fast flows. Structural adaptations from these suction organs could translate into future bioinspired attachment systems that perform well on a wide range of surfaces

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF

    The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh

    Get PDF
    The occurrence of heavy rainfall in the south-eastern hilly region of Bangladesh makes this area highly susceptible to recurrent flash flooding. As the region is the commercial capital of Bangladesh, these flash floods pose a significant threat to the national economy. Predicting this type of flooding is a complex task which requires a detailed understanding of the river basin characteristics. This study evaluated the susceptibility of the region to flash floods emanating from within the Karnaphuli and Sangu river basins. Twenty-two morphometric parameters were used. The occurrence and impact of flash floods within these basins are mainly associated with the volume of runoff, runoff velocity, and the surface infiltration capacity of the various watersheds. Analysis showed that major parts of the basin were susceptible to flash flooding events of a ‘moderate’-to-‘very high’ level of severity. The degree of susceptibility of ten of the watersheds was rated as ‘high’, and one was ‘very high’. The flash flood susceptibility map drawn from the analysis was used at the sub-district level to identify populated areas at risk. More than 80% of the total area of the 16 sub-districts were determined to have a ‘high’-to-‘very-high’-level flood susceptibility. The analysis noted that around 3.4 million people reside in flash flood-prone areas, therefore indicating the potential for loss of life and property. The study identified significant flash flood potential zones within a region of national importance, and exposure of the population to these events. Detailed analysis and display of flash flood susceptibility data at the sub-district level can enable the relevant organizations to improve watershed management practices and, as a consequence, alleviate future flood risk

    HuGoS: A Multi-user Virtual Environment for Studying Human–Human Swarm Intelligence

    No full text
    The research topic of human–human swam intelligence includes many mechanisms that need to be studied in controlled experiment conditions with multiple human subjects. Virtual environments are a useful tool to isolate specific human interactions for study, but current platforms support only a small scope of possible research areas. In this paper, we present HuGoS—‘Humans Go Swarming’—a multi-user virtual environment in Unity, as a comprehensive tool for experimentation in human–human swarm intelligence. We identify possible experiment classes for studying human collective behavior, and equip our virtual environment with sufficient features to support each of these experiment classes. We then demonstrate the functionality of the virtual environment in simple examples for three of the experiment classes: human collective decision making, human social learning strategies, and agent-level human interaction with artificial swarms, including robot swarms.info:eu-repo/semantics/publishedDorigo, M. Stützle, T. Blesa, M. J. Blum, C. Hamann, H. Heinrich, M. K. & Strobel, V. (2020). Swarm Intelligence: 12th International Conference, ANTS 2020, Barcelona, Spain, October 26-28, 2020, Proceedings. Cham: Springer International Publishing AG. 978303060375
    corecore