29 research outputs found

    Hearing Sensation Levels of Emitted Biosonar Clicks in an Echolocating Atlantic Bottlenose Dolphin

    Get PDF
    Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of −34, −28, and −22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation

    Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)

    Auditory temporal resolution and evoked responses to pulsed sounds for the Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197 (2011): 1149-1158, doi:10.1007/s00359-011-0677-y.Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (i) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (ii) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1250 Hz, after which response amplitudes declined until extinguished beyond 2500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well-suited to detect their unique echolocation signals.The work was supported by the Office of Naval Research, a WHOI Mellon Joint Initiatives Award , the Chinese National Natural Science Foundation (grant No: 30730018) and the Institute of Hydrobiology of the Chinese Academy of Sciences2012-09-1

    Visual Lateralization in Wild Striped Dolphins (Stenella coeruleoalba) in Response to Stimuli with Different Degrees of Familiarity

    Get PDF
    Background: Apart from findings on both functional and motor asymmetries in captive aquatic mammals, only few studies have focused on lateralized behaviour of these species in the wild. Methodology/Principal Findings: In this study we focused on lateralized visual behaviour by presenting wild striped dolphins with objects of different degrees of familiarity (fish, ball, toy). Surveys were conducted in the Gulf of Taranto, the northern Ionian Sea portion delimited by the Italian regions of Calabria, Basilicata and Apulia. After sighting striped dolphins from a research vessel, different stimuli were presented in a random order by a telescopic bar connected to the prow of the boat. The preferential use of the right/left monocular viewing during inspection of the stimuli was analysed. Conclusion: Results clearly showed a monocular viewing preference with respect to the type of the stimulus employed. Due to the complete decussation of the optical nerves in dolphin brain our results reflected a different specialization of brain hemispheres for visual scanning processes confirming that in this species different stimuli evoked different patterns of eye use. A preferential use of the right eye (left hemisphere) during visual inspection of unfamiliar targets was observed supporting the hypothesis that, in dolphins, the organization of the functional neural structures which reflected cerebral asymmetries for visual object recognition could have been subjected to a deviation from the evolutionary line of mos

    Hearing Loss in Stranded Odontocete Dolphins and Whales

    Get PDF
    The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70–90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested

    Visual Laterality of Calf–Mother Interactions in Wild Whales

    Get PDF
    Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts.) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere.Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates

    Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis

    No full text
    In Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis, the effects of fatiguing noise on hearing thresholds at frequencies of 32, 45, 64, and 128 kHz were investigated. The noise parameters were: 0.5-oct bandwidth, -1 to +0.5 oct relative to the test frequency, 150 dB re 1 mu Pa (140-160 dB re 1 mu Pa in one measurement series), with 1-30 min exposure time. Thresholds were evaluated using the evoked-potential technique allowing the tracing of threshold variations with a temporal resolution better than 1 min. The most effective fatiguing noise was centered at 0.5 octave below the test frequency. The temporary threshold shift (TTS) depended on the frequencies of the fatiguing noise and test signal: The lower the frequencies, the bigger the noise effect. The time-to-level trade of the noise effect was incomplete: the change of noise level by 20 dB resulted in a change of TTS level by nearly 20 dB, whereas the tenfold change of noise duration resulted in a TTS increase by 3.8-5.8 dB. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3596470
    corecore