10 research outputs found

    The relation of steady evaporating drops fed by an influx and freely evaporating drops

    Full text link
    We discuss a thin film evolution equation for a wetting evaporating liquid on a smooth solid substrate. The model is valid for slowly evaporating small sessile droplets when thermal effects are insignificant, while wettability and capillarity play a major role. The model is first employed to study steady evaporating drops that are fed locally through the substrate. An asymptotic analysis focuses on the precursor film and the transition region towards the bulk drop and a numerical continuation of steady drops determines their fully non-linear profiles. Following this, we study the time evolution of freely evaporating drops without influx for several initial drop shapes. As a result we find that drops initially spread if their initial contact angle is larger than the apparent contact angle of large steady evaporating drops with influx. Otherwise they recede right from the beginning

    Transport at Low Reynolds Numbers

    No full text

    Physicochemical hydrodynamics of droplets out of equilibrium

    Get PDF
    Droplets abound in nature and technology. In general, they are multicomponent, and, when out of equilibrium, have gradients in concentration, implying flow and mass transport. Moreover, phase transitions can occur, in the form of evaporation, solidification, dissolution or nucleation of a new phase. The droplets and their surrounding liquid can be binary, ternary or contain even more components, with several in different phases. Since the early 2000s, rapid advances in experimental and numerical fluid dynamical techniques have enabled major progress in our understanding of the physicochemical hydrodynamics of such droplets, further narrowing the gap from fluid dynamics to chemical engineering and colloid and interfacial science, arriving at a quantitative understanding of multicomponent and multiphase droplet systems far from equilibrium, and aiming towards a one-to-one comparison between experiments and theory or numerics. This Perspective discusses examples of the physicochemical hydrodynamics of droplet systems far from equilibrium and the relevance of such systems for applications

    Physicochemical hydrodynamics of droplets out of equilibrium

    No full text
    corecore