131 research outputs found

    Pesquisas com a maconha no Brasil

    Full text link

    Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1) deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail.</p> <p>Results</p> <p>THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX)-expressing intermediate progenitor cells.</p> <p>Conclusion</p> <p>CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.</p

    Distinct Neurobehavioural Effects of Cannabidiol in Transmembrane Domain Neuregulin 1 Mutant Mice

    Get PDF
    The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes

    Whole organisms or pure compounds? entourage effect versus drug specificity

    Get PDF
    As the therapeutic use of sacred plants and fungi becomes increasingly accepted by Western medicine, a tug of war has been taking place between those who advocate the traditional consumption of whole organisms and those who defend exclusively the utilization of purified compounds. The attempt to reduce organisms to single active principles is challenged by the sheer complexity of traditional medicine. Ayahuasca, for example, is a concoction of at least two plant species containing multiple psychoactive substances with complex interactions. Similarly, cannabis contains dozens of psychoactive substances whose specific combinations in different strains correspond to different types of therapeutic and cognitive effects. The “entourage effect” refers to the synergistic effects of the multiple compounds present in whole organisms, which may potentiate clinical efficacy while attenuating side effects. In opposition to this view, mainstream pharmacology is adamant about the need to use purified substances, presumably more specific and safe. In this chapter, I will review the evidence on both sides to discuss the scientific, economic, and political implications of this controversy. The evidence indicates that it is time to embrace the therapeutic complexity of psychedelics.2019-07-3

    Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis.Polyclonal activation of T cells, following injection of concanavalin A (ConA), in C57BL/6 mice caused acute hepatitis, characterized by significant increase in aspartate transaminase (AST), induction of inflammatory cytokines, and infiltration of mononuclear cells in the liver, leading to severe liver injury. Administration of cannabidiol (CBD), a natural non-psychoactive cannabinoid, after ConA challenge, inhibited hepatitis in a dose-dependent manner, along with all of the associated inflammation markers. Phenotypic analysis of liver infiltrating cells showed that CBD-mediated suppression of hepatitis was associated with increased induction of arginase-expressing CD11b(+)Gr-1(+) MDSCs. Purified CBD-induced MDSCs could effectively suppress T cell proliferation in vitro in arginase-dependent manner. Furthermore, adoptive transfer of purified MDSCs into naïve mice conferred significant protection from ConA-induced hepatitis. CBD failed to induce MDSCs and suppress hepatitis in the livers of vanilloid receptor-deficient mice (TRPV1(-/-)) thereby suggesting that CBD primarily acted via this receptor to induce MDSCs and suppress hepatitis. While MDSCs induced by CBD in liver consisted of granulocytic and monocytic subsets at a ratio of ∼2∶1, the monocytic MDSCs were more immunosuppressive compared to granulocytic MDSCs. The ability of CBD to induce MDSCs and suppress hepatitis was also demonstrable in Staphylococcal enterotoxin B-induced liver injury.This study demonstrates for the first time that MDSCs play a critical role in attenuating acute inflammation in the liver, and that agents such as CBD, which trigger MDSCs through activation of TRPV1 vanilloid receptors may constitute a novel therapeutic modality to treat inflammatory diseases
    corecore