22 research outputs found
Hui and Walter's latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies
Understanding occupational heat exposure in the United States and proposing a quantifying stress index
Exposure assessment of adults living near unconventional oil and natural gas development and reported health symptoms in southwest Pennsylvania, USA
Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru
BACKGROUND:Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. METHODOLOGY:A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2-18.0%), 19.8% (95% CI: 12.7-28.7%) and 3.3% (95% CI: 1.4-6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6-24.7%) among participants < 15 years, suggesting recent transmission. Increasing age, positive triatomines in a participant's house, and ownership of a T. cruzi positive guinea pig were independent correlates of T. cruzi infection. Only one species of triatomine was found, Panstrongylus lignarius, formerly P. herreri. Approximately forty percent (39.9%, 95% CI: 33.2-46.9%) of surveyed households were infested with this vector and 14.9% (95% CI: 10.4-20.5%) had at least one triatomine positive for T. cruzi. The cardiac abnormality of right bundle branch block was rare, but only identified in seropositive individuals. CONCLUSIONS:Our research documents a substantial prevalence of T. cruzi infection in Cutervo and highlights a need for greater attention and vector control efforts in northern Peru
