43 research outputs found

    A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The induction of tumor cell invasion is an important step in tumor progression. Due to the cost and slowness of <it>in-vivo </it>invasion assays, there is need for quantitative <it>in-vitro </it>invasion assays that mimic as closely as possible the tumor environment and in which conditions can be rigorously controlled.</p> <p>Methods</p> <p>We have established a novel asymmetric 3D in-vitro invasion assay by embedding a monolayer of tumor cells between two layers of collagen. The cells were then allowed to invade the upper and lower layers of collagen. To visualize invading cells the gels were sectioned perpendicular to the monolayer so that after seeding the monolayer appears as a thin line precisely defining the origin of invasion. The number of invading tumor cells, their proliferation rate, the distance they traverse and the direction of invasion could then be determined quantitatively.</p> <p>Results</p> <p>The assay was used to compare the invasive properties of several tumor cell types and the results compare well with those obtained by previously described assays. Lysyl-oxidase like protein-2 (Loxl2) is a potent inducer of invasiveness. Using our assay we show for the first time that inhibition of endogenous Loxl2 expression in several types of tumor cells strongly inhibits their invasiveness. We also took advantage of the asymmetric nature of the assay in order to show that fibronectin enhances the invasiveness of breast cancer cells more potently than laminin. The asymmetric properties of the assay were also used to demonstrate that soluble factors derived from fibroblasts can preferentially attract invading breast cancer cells.</p> <p>Conclusion</p> <p>Our assay displays several advantages over previous invasion assays as it is allows the quantitative analysis of directional invasive behavior of tumor cells in a 3D environment mimicking the tumor microenvironment. It should be particularly useful for the study of the effects of components of the tumor microenvironment on tumor cell invasiveness.</p

    Inoculated mammary carcinoma-associated fibroblasts: contribution to hormone independent tumor growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence has underscored the role of carcinoma associated fibroblasts (CAF) in tumor growth. However, there are controversial data regarding the persistence of inoculated CAF within the tumors. We have developed a model in which murine metastatic ductal mammary carcinomas expressing estrogen and progesterone receptors transit through different stages of hormone dependency. Hormone dependent (HD) tumors grow only in the presence of progestins, whereas hormone independent (HI) variants grow without hormone supply. We demonstrated previously that CAF from HI tumors (CAF-HI) express high levels of FGF-2 and that FGF-2 induced HD tumor growth <it>in vivo</it>. Our main goal was to investigate whether inoculated CAF-HI combined with purified epithelial (EPI) HD cells can induce HD tumor growth.</p> <p>Methods</p> <p>Purified EPI cells of HD and HI tumors were inoculated alone, or together with CAF-HI, into female BALB/c mice and tumor growth was evaluated. In another set of experiments, purified EPI-HI alone or combined with CAF-HI or CAF-HI-GFP were inoculated into BALB/c or BALB/c-GFP mice. We assessed whether inoculated CAF-HI persisted within the tumors by analyzing inoculated or host CAF in frozen sections of tumors growing in BALB/c or BALB/c-GFP mice. The same model was used to evaluate early stages of tumor development and animals were euthanized at 2, 7, 12 and 17 days after EPI-HI or EPI-HI+CAF-HI inoculation. In angiogenesis studies, tumor vessels were quantified 5 days after intradermal inoculation.</p> <p>Results</p> <p>We found that admixed CAF-HI failed to induce epithelial HD tumor growth, but instead, enhanced HI tumor growth (p < 0.001). Moreover, inoculated CAF-HI did not persist within the tumors. Immunofluorescence studies showed that inoculated CAF-HI disappeared after 13 days. We studied the mechanisms by which CAF-HI increased HI tumor growth, and found a significant increase in angiogenesis (p < 0.05) in the co-injected mice at early time points.</p> <p>Conclusions</p> <p>Inoculated CAF-HI do not persist within the tumor mass although they play a role during the first stages of tumor formation promoting angiogenesis. This angiogenic environment is unable to replace the hormone requirement of HD tumors that still need the hormone to recruit the stroma from the host.</p

    Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV) can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS), has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone.</p> <p>Methods</p> <p>We evaluated the efficacy of MV-NIS against medulloblastoma cells <it>in vitro</it> and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease) or right lateral ventricle (disseminated disease) and subsequently treated with MV-NIS. Subsets of these mice were given a dose of <sup>131</sup>I at 24, 48 or 72 hours later.</p> <p>Results</p> <p>MV-NIS treatment, both by itself and in combination with <sup>131</sup>I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given <sup>131</sup>I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given <sup>131</sup>I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone.</p> <p>Conclusions</p> <p>These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for the treatment of medulloblastoma.</p

    Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis

    No full text
    Purpose It has been reported that stromal cell features may affect the clinical outcome of breast cancer patients. Cancer associated fibroblasts (CAFs) represent one of the most abundant cell types within the breast cancer stroma. Here, we aimed to explore the influence of CAFs on breast cancer gene expression, as well as on invasion and angiogenesis. Methods qRT-PCR was used to evaluate the expression of several cancer progression related genes (S100A4, TGFβ, FGF2, FGF7, PDGFA, PDGFB, VEGFA, IL6, IL8, uPA, MMP2, MMP9, MMP11 and TIMP1) in the human breast cancer-derived cell lines MCF-7 and MDA-MB-231, before and after co-culture with CAFs. Stromal mononuclear inflammatory cell (MIC) MMP11 expression was used to stratify primary tumors. In addition, we assessed the in vitro effects of CAFs on both MDA-MB-231 breast cancer cell invasion and endothelial cell (HUVEC) tube formation. Results We found that the expression levels of most of the genes tested were significantly increased in both breast cancer-derived cell lines after co-culture with CAFs from either MMP11+ or MMP11- MIC tumors. IL6 and IL8 showed an increased expression in both cancer-derived cell lines after co-culture with CAFs from MMP11+ MIC tumors. We also found that the invasive and angiogenic capacities of, respectively, MDA-MB-231 and HUVEC cells were increased after co-culture with CAFs, especially those from MMP11+ MIC tumors. Conclusions Our data indicate that tumor-derived CAFs can induce up-regulation of genes involved in breast cancer progression. Our data additionally indicate that CAFs, especially those derived from MMP11+ MIC tumors, can promote breast cancer cell invasion and angiogenesis
    corecore