17 research outputs found

    Residual Effects of Organic Manures with Different Levels of Chemical Fertilizers on Rice

    Get PDF
    A field experiment was conducted to evaluate the residual effects of organic manures and different level of recommended fertilizer dose (RFD) on the yield and nutrient uptake of BBRI dhan29 at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh, Bangladesh. The experiment containing seven treatments were laid out in a randomized complete block design with three replications. The treatments were T0 (Control), T1 (100% RFD), T2 (75% RFD + residual effect of CD 5 t ha⁻¹), T3 (75% RFD + residual effect of PM 3 t ha⁻¹), T4 (75% RFD + residual effect of residual effect of Com. 5 t ha⁻¹), T5 (75% RFD + residual effect of CD 2.5 t ha⁻¹, PM 1.5 t ha⁻¹, and Com 2.5 t ha⁻¹) and T6 (50% RFD + residual effect of CD 2.5 t ha⁻¹, PM 1.5 t ha⁻¹, and Com. 2.5 t ha⁻¹). The manures viz. cowdung (CD), poultry manure (PD) and compost (Com.) was applied to the previous crop (T. Aman rice). The recommended doses of fertilizers were used to supply N, P, K and S @ 140, 15, 60 and 15 kg ha⁻¹, respectively to the present crop. Residual effects of organic manure with inorganic fertilizers significantly increased the yield attributes as well as grain and straw yields of rice. Treatment T6 (50% RFD + residual effect of CD 2.5 t ha-1, PM 1.5 t ha⁻¹, and Com. 2.5 t ha⁻¹) produced the highest grain yield (6.87 t ha⁻¹) and straw yield (7.24 t ha⁻¹). The lowest grain yield (3.22 t ha⁻¹) and straw yield (4.55 t ha⁻¹) were found in T0 (Control) treatment. Further, it was observed that T2 (75% RFD + CD 5 t ha⁻¹) performed better compared to T3 (75% RFD + PM 3 t ha⁻¹) and T4 (75% RFD + Com 5 t ha⁻¹) in exerting residual effects. The NPKS contents and uptake were markedly influenced by residual effects of manures and fertilizers. Therefore, treatment T6 receiving 50% RFD along with the residual effect of 2.5 t ha⁻¹cowdung, 1.5 t ha⁻¹ poultry manure and 2.5 t ha⁻¹ 1 compost was found to be the best combination of organic and inorganic fertilizers for obtaining the maximum yield of BRRI dhan2

    Advances in research on the use of biochar in soil for remediation: a review

    Get PDF
    Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants.  Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively.  Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations ( 50 mg kg−1).  Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist

    Receptivity towards Remote Service Delivery among Social Work Clients and Practitioners during COVID Times: A Systematic Review

    No full text
    10.1080/26408066.2023.2228791Journal of Evidence-Based Social Work206800-83
    corecore