23 research outputs found

    Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables

    Get PDF
    It is known that in developing countries, a large quantity of fruit and vegetable losses results at postharvest and processing stages due to poor or scarce storage technology and mishandling during harvest. The use of new and innovative technologies for reducing postharvest losses is a requirement that has not been fully covered. The use of edible coatings (mainly based on biopolymers) as a postharvest technique for agricultural commodities has offered biodegradable alternatives in order to solve problems (e.g., microbiological growth) during produce storage. However, biopolymer-based coatings can present some disadvantages such as: poor mechanical properties (e.g., lipids) or poor water vapor barrier properties (e.g., polysaccharides), thus requiring the development of new alternatives to solve these drawbacks. Recently, nanotechnology has emerged as a promising tool in the food processing industry, providing new insights about postharvest technologies on produce storage. Nanotechnological approaches can contribute through the design of functional packing materials with lower amounts of bioactive ingredients, better gas and mechanical properties and with reduced impact on the sensorial qualities of the fruits and vegetables. This work reviews some of the main factors involved in postharvest losses and new technologies for extension of postharvest storage of fruits and vegetables, focused on perspective uses of edible coatings and nano-laminate coatings.María L. Flores-López thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant Number: 215499/310847). Miguel A. Cerqueira (SFRH/BPD/72753/2010) is recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project ‘‘BioInd Biotechnology and Bioengineering for improved Industrial and AgroFood processes,’’ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico – FUNCAP, CE Brazil (CI10080-00055.01.00/13)

    Lipid Addition to Improve Barrier Properties of Edible Starch-based Films and Coatings

    Get PDF
    Effects of formulation (lipid presence, type of starch, and plasticizer) on microstructure, water vapor (WVP) and gas (GP) permeabilities of films and coatings were analyzed. Plasticizer was necessary to maintain film and coating integrity and to avoid pores and cracks. Films made from high amylose starch showed lower WVP and GP than regular corn starch films; permeabilities of films with sorbitol (20 g/L) were lower than those with glycerol. The addition of 2g/L sunflower oil to the formulations decreased WVP of starch-based films; X-ray diffraction and Differential Scanning Calorimetry experiments demonstrated that films with plasticizer and lipid showed lower crystalline-amorphous ratio compared to films without additives. Microstructural observations helped explain the decrease of the film permeabilities during storage.Fil: Garcia, Maria Alejandra. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Martino, Miriam Nora. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; ArgentinaFil: Zaritzky, Noemi Elisabet. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; Argentin

    UV-C and hyperoxia abiotic stresses to improve healthiness of carrots: study of combined effects

    No full text
    Phenolic compounds are phytochemicals with high health-promoting properties. Carrot is a vegetable highly worldwide consumed although its phenolic content is low compared to other plant products. The aim of this work was to evaluate changes in phenolic compounds in carrots caused by abiotic stresses. The phenylalanine ammonia-lyase (PAL) activity, phenolic compounds and total antioxidant capacity (TAC) changes during storage up to 72 h at 15 °C after wounding (shredding), 9 kJ UV-C m−2 pretreatment and hyperoxia (80 kPa) conditions of carrots were studied. Shredding and hyperoxia storage induced the highest phenolic compounds and TAC enhancements. Accumulation of phenolic compounds in shredded carrots could be structured in the following phases: 1st phase (<24 h): unchanged phenolic compounds levels with minimum PAL activity; 2nd phase (24–48 h): moderate phenolic increases (≈600–700 mg CAE kg−1 accumulated in 24 h) concurring with the greatest increase of PAL activity; 3nd phase (48–72 h): high phenolic increases (≈1600–2700 mg CAE kg−1, accumulated in 24 h) while a moderate increment of PAL activity was registered. Although UV-C pretreatment of shreds reduced phenolic accumulation, 600 % increments were still registered in those samples stored under hyperoxia conditions for 72 h. However, the contents of chlorogenic acid at 72 h were 1.4-fold higher in irradiated shreds under hyperoxia compared to the same samples under air conditions.Authors are grateful to the Spanish Ministry Economy and Competitiveness (Project AGL2013-48830-C2-1-R) and FEDER for financial support. We are grateful to V. Díaz-López for his skillful technical assistance
    corecore