382 research outputs found

    Cosmic string loops and large-scale structure

    Get PDF
    We investigate the contribution made by small loops from a cosmic string network as seeds for large-scale structure formation. We show that cosmic string loops are highly correlated with the long-string network on large scales and therefore contribute significantly to the power spectrum of density perturbations if the average loop lifetime is comparable to or above one Hubble time. This effect further improves the large-scale bias problem previously identified in earlier studies of cosmic string models.Comment: 5 pages, 5 figure

    Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    Full text link
    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest neighbor interactions starting from random initial conditions. In this Letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.Comment: 5 pages, 7 figures; new version, with new title and figure

    Cosmic strings, loops, and linear growth of matter perturbations

    Get PDF
    We describe the detailed study and results of high-resolution numerical simulations of string-induced structure formation in open universes and those with a non-zero cosmological constant. The effect from small loops generated from the string network has also been investigated. We provide a semi-analytical model which can reproduce these simulation results. A detailed study of cosmic string network properties regarding structure formation is also given, including the correlation time, the topological analysis of the source spectrum, the correlation between long strings and loops, and the evolution of long-string and loop energy densities. For models with Γ=Ωh=0.10.2andacolddarkmatterbackground,weshowthatthelineardensityfluctuationpowerspectruminducedbycosmicstringshasbothanamplitudeat\Gamma=\Omega h=0.1--0.2 and a cold dark matter background, we show that the linear density fluctuation power spectrum induced by cosmic strings has both an amplitude at 8 h^{-1}Mpc,Mpc, \sigma_8$, and an overall shape which are consistent within uncertainties with those currently inferred from galaxy surveys. The cosmic string scenario with hot dark matter requires a strongly scale-dependent bias in order to agree with observations.Comment: 60 pages, 24 figure

    Topological defects: A problem for cyclic universes?

    Full text link
    We study the behaviour of cosmic string networks in contracting universes, and discuss some of their possible consequences. We note that there is a fundamental time asymmetry between defect network evolution for an expanding universe and a contracting universe. A string network with negligible loop production and small-scale structure will asymptotically behave during the collapse phase as a radiation fluid. In realistic networks these two effects are important, making this solution only approximate. We derive new scaling solutions describing this effect, and test them against high-resolution numerical simulations. A string network in a contracting universe, together with the gravitational radiation background it has generated, can significantly affect the dynamics of the universe both locally and globally. The network can be an important source of radiation, entropy and inhomogeneity. We discuss the possible implications of these findings for bouncing and cyclic cosmological models.Comment: 11 RevTeX 4 pages, 6 figures; version to appear in Phys. Rev.

    Primordial Adiabatic Fluctuations from Cosmic Defects

    Get PDF
    We point out that in the context of ``two-metric'' theories of gravity there is the possibility that cosmic defects will produce a spectrum of primordial adiabatic density perturbations. This will happen when the speed characterising the defect-producing scalar field is much larger than the speed characterising gravity and all standard model particles. This model will exactly mimic the standard predictions of inflationary models, with the exception of a small non-Gaussian signal which could be detected by future experiments. We briefly discuss defect evolution in these scenarios and analyze their cosmological consequences.Comment: 5 LaTeX pages, no figures; version to appear in Phys. Rev. Let

    Dark Matter and Dark Energy

    Full text link
    I briefly review our current understanding of dark matter and dark energy. The first part of this paper focusses on issues pertaining to dark matter including observational evidence for its existence, current constraints and the `abundance of substructure' and `cuspy core' issues which arise in CDM. I also briefly describe MOND. The second part of this review focusses on dark energy. In this part I discuss the significance of the cosmological constant problem which leads to a predicted value of the cosmological constant which is almost 1012310^{123} times larger than the observed value \la/8\pi G \simeq 10^{-47}GeV4^4. Setting \la to this small value ensures that the acceleration of the universe is a fairly recent phenomenon giving rise to the `cosmic coincidence' conundrum according to which we live during a special epoch when the density in matter and \la are almost equal. Anthropic arguments are briefly discussed but more emphasis is placed upon dynamical dark energy models in which the equation of state is time dependent. These include Quintessence, Braneworld models, Chaplygin gas and Phantom energy. Model independent methods to determine the cosmic equation of state and the Statefinder diagnostic are also discussed. The Statefinder has the attractive property \atridot/a H^3 = 1 for LCDM, which is helpful for differentiating between LCDM and rival dark energy models. The review ends with a brief discussion of the fate of the universe in dark energy models.Comment: 40 pages, 11 figures, Lectures presented at the Second Aegean Summer School on the Early Universe, Syros, Greece, September 2003, New References added Final version to appear in the Proceeding

    Cosmic structure formation in Hybrid Inflation models

    Get PDF
    A wide class of inflationary models, known as Hybrid Inflation models, may produce topological defects during a phase transition at the end of the inflationary epoch. We point out that, if the energy scale of these defects is close to that of Grand Unification, then their effect on cosmic structure formation and the generation of microwave background anisotropies cannot be ignored. Therefore, it is possible for structure to be seeded by a combination of the adiabatic perturbations produced during inflation and active isocurvature perturbations produced by defects. Since the two mechanisms are uncorrelated the power spectra can be computed by a weighted average of the individual contributions. We investigate the possible observational consequences of this with reference to general Hybrid Inflation models and also a specific model based on Supergravity. These mixed perturbation scenarios have some novel observational consequences and these are discussed qualitatively.Comment: 22 Page

    Junctions and spiral patterns in Rock-Paper-Scissors type models

    Full text link
    We investigate the population dynamics in generalized Rock-Paper-Scissors models with an arbitrary number of species NN. We show, for the first time, that spiral patterns with NN-arms may develop both for odd and even NN, in particular in models where a bidirectional predation interaction of equal strength between all species is modified to include one N-cyclic predator-prey rule. While the former case gives rise to an interface network with Y-type junctions obeying the scaling law Lt1/2L \propto t^{1/2}, where LL is the characteristic length of the network and tt is the time, the later can lead to a population network with NN-armed spiral patterns, having a roughly constant characteristic length scale. We explicitly demonstrate the connection between interface junctions and spiral patterns in these models and compute the corresponding scaling laws. This work significantly extends the results of previous studies of population dynamics and could have profound implications for the understanding of biological complexity in systems with a large number of species.Comment: 6 pages, 8 figures, published versio

    Covariant and locally Lorentz-invariant varying speed of light theories

    Get PDF
    We propose definitions for covariance and local Lorentz invariance applicable when the speed of light cc is allowed to vary. They have the merit of retaining only those aspects of the usual definitions which are invariant under unit transformations, and which can therefore legitimately represent the outcome of an experiment. We then discuss some possibilities for invariant actions governing the dynamics of such theories. We consider first the classical action for matter fields and the effects of a changing cc upon quantization. We discover a peculiar form of quantum particle creation due to a varying cc. We then study actions governing the dynamics of gravitation and the speed of light. We find the free, empty-space, no-gravity solution, to be interpreted as the counterpart of Minkowksi space-time, and highlight its similarities with Fock-Lorentz space-time. We also find flat-space string-type solutions, in which near the string core cc is much higher. We label them fast-tracks and compare them with gravitational wormholes. We finally discuss general features of cosmological and black hole solutions, and digress on the meaning of singularities in these theories.Comment: To be published in Physical Review
    corecore