10 research outputs found

    A supersonic crowdion in mica: Ultradiscrete kinks with energy between 40^{40}K recoil and transmission sputtering

    Get PDF
    In this chapter we analyze in detail the behaviour and properties of the kinks found in an one dimensional model for the close packed rows of potassium ions in mica muscovite. The model includes realistic potentials obtained from the physics of the problem, ion bombardment experiments and molecular dynamics fitted to experiments. These kinks are supersonic and have an unique velocity and energy. They are ultradiscrete involving the translation of an interstitial ion, which is the reason they are called 'crowdions'. Their energy is below the most probable source of energy, the decay of the 40^{40}K isotope and above the energy needed to eject an atom from the mineral, a phenomenon that has been observed experimentallyComment: 28 pages, 15 figure

    Collective-coordinate analysis of inhomogeneous nonlinear Klein-Gordon field theory

    Full text link
    Two different sets of collective-coordinate equations for solitary solutions of Nonlinear Klein-Gordon (NKG) model is introduced. The collective-coordinate equations are derived using different approaches for adding the inhomogeneities as exrernal potentials to the soliton equation of motion. Interaction of the NKG field with a local inhomogeneity like a delta function potential wall and also delta function potential well is investigated using the presented collective-coordinate equations and the results of two different models are compared. Most of the characters of the interaction are derived analytically. Analytical results are also compared with the results of numerical simulations.Comment: 16 pages, 8 figures. Accepted for publication in Volume 43 of the Brazilian Journal of Physic

    Complex Oxides as Molecular Materials: Structure and Bonding in High-Valent Early Transition Metal Compounds

    No full text
    corecore