25 research outputs found

    A Comparative Computer Simulation of Dendritic Morphology

    Get PDF
    Computational modeling of neuronal morphology is a powerful tool for understanding developmental processes and structure-function relationships. We present a multifaceted approach based on stochastic sampling of morphological measures from digital reconstructions of real cells. We examined how dendritic elongation, branching, and taper are controlled by three morphometric determinants: Branch Order, Radius, and Path Distance from the soma. Virtual dendrites were simulated starting from 3,715 neuronal trees reconstructed in 16 different laboratories, including morphological classes as diverse as spinal motoneurons and dentate granule cells. Several emergent morphometrics were used to compare real and virtual trees. Relating model parameters to Branch Order best constrained the number of terminations for most morphological classes, except pyramidal cell apical trees, which were better described by a dependence on Path Distance. In contrast, bifurcation asymmetry was best constrained by Radius for apical, but Path Distance for basal trees. All determinants showed similar performance in capturing total surface area, while surface area asymmetry was best determined by Path Distance. Grouping by other characteristics, such as size, asymmetry, arborizations, or animal species, showed smaller differences than observed between apical and basal, pointing to the biological importance of this separation. Hybrid models using combinations of the determinants confirmed these trends and allowed a detailed characterization of morphological relations. The differential findings between morphological groups suggest different underlying developmental mechanisms. By comparing the effects of several morphometric determinants on the simulation of different neuronal classes, this approach sheds light on possible growth mechanism variations responsible for the observed neuronal diversity

    Theta-paced flickering between place-cell maps in the hippocampus

    Get PDF
    The ability to recall discrete memories is thought to depend on the formation of attractor states in recurrent neural networks. In such networks, representations can be reactivated reliably from subsets of the cues that were present when the memory was encoded, at the same time as interference from competing representations is minimized. Theoretical studies have pointed to the recurrent CA3 system of the hippocampus as a possible attractor network. Consistent with predictions from these studies, experiments have shown that place representations in CA3 and downstream CA1 tolerate small changes in the configuration of the environment but switch to uncorrelated representations when dissimilarities become larger. The kinetics supporting such network transitions, at the subsecond time scale, is poorly understood, however. Here we show that instantaneous transformation of the spatial context (\u2018teleportation\u2019) does not change the hippocampal representation all at once but is followed by temporary bistability in the discharge activity of CA3 ensembles. Rather than sliding through a continuum of intermediate activity states, the CA3 network undergoes a short period of competitive flickering between pre-formed representations for past and present environment, before settling on the latter. Network flickers are extremely fast, often with complete replacement of the active ensemble from one theta cycle to the next. Within individual cycles, segregation is stronger towards the end, when firing starts to decline, pointing to the theta cycle as a temporal unit for expression of attractor states in the hippocampus. Repetition of pattern-completion processes across successive theta cycles may facilitate error correction and enhance discriminative power in the presence of weak and ambiguous input cues

    Homeostatic Plasticity Studied Using In Vivo Hippocampal Activity-Blockade: Synaptic Scaling, Intrinsic Plasticity and Age-Dependence

    Get PDF
    Homeostatic plasticity is thought to be important in preventing neuronal circuits from becoming hyper- or hypoactive. However, there is little information concerning homeostatic mechanisms following in vivo manipulations of activity levels. We investigated synaptic scaling and intrinsic plasticity in CA1 pyramidal cells following 2 days of activity-blockade in vivo in adult (postnatal day 30; P30) and juvenile (P15) rats. Chronic activity-blockade in vivo was achieved using the sustained release of the sodium channel blocker tetrodotoxin (TTX) from the plastic polymer Elvax 40W implanted directly above the hippocampus, followed by electrophysiological assessment in slices in vitro. Three sets of results were in general agreement with previous studies on homeostatic responses to in vitro manipulations of activity. First, Schaffer collateral stimulation-evoked field responses were enhanced after 2 days of in vivo TTX application. Second, miniature excitatory postsynaptic current (mEPSC) amplitudes were potentiated. However, the increase in mEPSC amplitudes occurred only in juveniles, and not in adults, indicating age-dependent effects. Third, intrinsic neuronal excitability increased. In contrast, three sets of results sharply differed from previous reports on homeostatic responses to in vitro manipulations of activity. First, miniature inhibitory postsynaptic current (mIPSC) amplitudes were invariably enhanced. Second, multiplicative scaling of mEPSC and mIPSC amplitudes was absent. Third, the frequencies of adult and juvenile mEPSCs and adult mIPSCs were increased, indicating presynaptic alterations. These results provide new insights into in vivo homeostatic plasticity mechanisms with relevance to memory storage, activity-dependent development and neurological diseases

    Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells

    Get PDF
    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and thus ultimately affect information processing and cognition

    Finite State Machines with Feedback : An Architecture Supporting Minimal Machine Consciousness

    No full text
    Finite state machines with feedback present a novel machine model when considered under the scenario of cognitive computations. The model is designed in the spirit of automata theory and presents a mix of Alan Turing’s finite state machines and Norbert Wiener’s machines with feedback. For the model we define, what we call, minimal machine consciousness and machine qualia. The design of our model is lead by natural engineering requirements. Its properties are justified by the latest findings in neuroscience and by ideas from the classical literature of the philosophy of mind. For the model a test distinguishing minimally conscious machines from unconscious ones (“zombies”) on a given cognitive task is proposed. Our modeling supports the claim that consciousness is a computational phenomenon that is not just a matter of suitable software but also requires a dedicated architecture

    Finite State Machines with Feedback : An Architecture Supporting Minimal Machine Consciousness

    No full text
    Finite state machines with feedback present a novel machine model when considered under the scenario of cognitive computations. The model is designed in the spirit of automata theory and presents a mix of Alan Turing’s finite state machines and Norbert Wiener’s machines with feedback. For the model we define, what we call, minimal machine consciousness and machine qualia. The design of our model is lead by natural engineering requirements. Its properties are justified by the latest findings in neuroscience and by ideas from the classical literature of the philosophy of mind. For the model a test distinguishing minimally conscious machines from unconscious ones (“zombies”) on a given cognitive task is proposed. Our modeling supports the claim that consciousness is a computational phenomenon that is not just a matter of suitable software but also requires a dedicated architecture
    corecore