78 research outputs found

    Pain in patients with pancreatic cancer: prevalence, mechanisms, management and future developments

    Get PDF
    Pain affects approximately 80% of patients with pancreatic cancer, with half requiring strong opioid analgesia, namely: morphine-based drugs on step three of the WHO analgesic ladder (as opposed to the weak opioids: codeine and tramadol). The presence of pain is associated with reduced survival. This article reviews the literature regarding pain: prevalence, mechanisms, pharmacological, and endoscopic treatments and identifies areas for research to develop individualized patient pain management pathways. The online literature review was conducted through: PubMed, Clinical Key, Uptodate, and NICE Evidence. There are two principal mechanisms for pain: pancreatic duct obstruction and pancreatic neuropathy which, respectively, activate mechanical and chemical nociceptors. In pancreatic neuropathy, several histological, molecular, and immunological changes occur which correlate with pain including: transient receptor potential cation channel activation and mast cell infiltration. Current pain management is empirical rather etiology-based and is informed by the WHO analgesic ladder for first-line therapies, and then endoscopic ultrasound-guided celiac plexus neurolysis (EUS-CPN) in patients with resistant pain. For EUS-CPN, there is only one clinical trial reporting a benefit, which has limited generalizability. Case series report pancreatic duct stenting gives effective analgesia, but there are no clinical trials. Progress in understanding the mechanisms for pain and when this occurs in the natural history, together with assessing new therapies both pharmacological and endoscopic, will enable individualized care and may improve patients’ quality of life and survival

    Co-Crystal Structures of Inhibitors with MRCKβ, a Key Regulator of Tumor Cell Invasion

    Get PDF
    MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 µM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC50 values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts

    NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer

    Get PDF
    The most lethal aspects of gastric adenocarcinoma (GA) are its invasive and metastatic properties. This aggressive phenotype remains poorly understood. We have recently identified neuroepithelial cell transforming gene 1 (NET1), a guanine exchange factor (GEF), as a novel GA-associated gene. Neuroepithelial cell transforming gene 1 expression is enhanced in GA and it is of functional importance in cell invasion. In this study, we demonstrate the activity of NET1 in driving cytoskeletal rearrangement, a key pathological mechanism in gastric tumour cell migration and invasion. Neuroepithelial cell transforming gene 1 expression was increased 10-fold in response to treatment with lysophosphatidic acid (LPA), resulting in an increase in active levels of RhoA and a 2-fold increase in cell invasion. Lysophosphatidic acid-induced cell invasion and migration were significantly inhibited using either NET1 siRNA or a RhoA inhibitor (C3 exoenzyme), thus indicating the activity of both NET1 and RhoA in gastric cancer progression. Furthermore, LPA-induced invasion and migration were also significantly reduced in the presence of cytochalasin D, an inhibitor of cytoskeletal rearrangements. Neuroepithelial cell transforming gene 1 knockdown resulted in AGS cell rounding and a loss of actin filament organisation, demonstrating the function of NET1 in actin organisation. These data highlight the importance of NET1 as a driver of tumour cell invasion, an activity mediated by RhoA activation and cytoskeletal reorganisation

    Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors

    Get PDF
    Introduction The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. Methods To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Results Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Conclusions Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.National Cancer Institute (U.S.). Integrative Cancer Biology Program (grant U54 CA112967)Virginia and D.K. Ludwig Fund for Cancer Researc

    Deleted in Liver Cancer 1 (DLC1) Negatively Regulates Rho/ROCK/MLC Pathway in Hepatocellular Carcinoma

    Get PDF
    Aims: Deleted in liver cancer 1 (DLC1), a member of RhoGTPase activating protein (GAP) family, is known to have suppressive activities in tumorigenicity and cancer metastasis. However, the underlying molecular mechanisms of how DLC1 suppresses cell motility have not been fully elucidated. Rho-kinase (ROCK) is an immediate down-stream effector of RhoA in mediating cellular cytoskeletal events and cell motility. In the present study, we aimed to investigate the effects of DLC1 on Rho/ROCK signaling pathway in hepatocellular carcinoma (HCC). Methodology/Principal Findings: We demonstrated that DLC1 negatively regulated ROCK-dependent actomyosin contractility. From immumofluorescence study, we found that ectopic expression of DLC1 abrogated Rho/ROCK-mediated cytoskeletal reorganization including formation of stress fibers and focal adhesions. It also downregulated cortical phosphorylation of myosin light chain 2 (MLC2). These inhibitory events by DLC1 were RhoGAP-dependent, as RhoGAP-deficient mutant of DLC1 (DLC1 K714E) abolished these inhibitory events. In addition, from western study, DLC1 inhibited ROCK-related myosin light chain phosphatase targeting unit 1 (MYPT1) phosphorylation at Threonine 853. By examining cell morphology under microscope, we found that ectopic expression of dominant-active ROCK released cells from DLC1-induced cytoskeletal collapse and cell shrinkage. Conclusion: Our data suggest that DLC1 negatively regulates Rho/ROCK/ MLC2. This implicates a ROCK-mediated pathway of DLC1 in suppressing metastasis of HCC cells and enriches our understanding in the molecular mechanisms involved in the progression of hepatocellular carcinoma. © 2008 Wong et al.published_or_final_versio

    Cancer: evolutionary, genetic and epigenetic aspects

    Get PDF
    There exist two paradigms about the nature of cancer. According to the generally accepted one, cancer is a by-product of design limitations of a multi-cellular organism (Greaves, Nat Rev Cancer 7:213–221, 2007). The essence of the second resides in the question “Does cancer kill the individual and save the species?” (Sommer, Hum Mutat 3:166–169, 1994). Recent data on genetic and epigenetic mechanisms of cell transformation summarized in this review support the latter point of view, namely that carcinogenesis is an evolutionary conserved phenomenon—a programmed death of an organism. It is assumed that cancer possesses an important function of altruistic nature: as a mediator of negative selection, it serves to preserve integrity of species gene pool and to mediate its evolutionary adjustment. Cancer fulfills its task due apparently to specific killer function, understanding mechanism of which may suggest new therapeutic strategy

    Cancer recurrence times from a branching process model

    Get PDF
    As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table

    Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

    Full text link

    Endoscopic ultrasound, the one‐stop shop for abdominal pain?

    No full text
    corecore