660 research outputs found

    Imaging spontaneous currents in superconducting arrays of pi-junctions

    Full text link
    Superconductors separated by a thin tunneling barrier exhibit the Josephson effect that allows charge transport at zero voltage, typically with no phase shift between the superconductors in the lowest energy state. Recently, Josephson junctions with ground state phase shifts of pi proposed by theory three decades ago have been demonstrated. In superconducting loops, pi-junctions cause spontaneous circulation of persistent currents in zero magnetic field, analogous to spin-1/2 systems. Here we image the spontaneous zero-field currents in superconducting networks of temperature-controlled pi-junctions with weakly ferromagnetic barriers using a scanning SQUID microscope. We find an onset of spontaneous supercurrents at the 0-pi transition temperature of the junctions Tpi = 3 K. We image the currents in non-uniformly frustrated arrays consisting of cells with even and odd numbers of pi-junctions. Such arrays are attractive model systems for studying the exotic phases of the 2D XY-model and achieving scalable adiabatic quantum computers.Comment: Pre-referee version. Accepted to Nature Physic

    Monitoring internet trade to inform species conservation actions

    Get PDF
    Specimens, parts and products of threatened species are now commonly traded on the internet. This could threaten the survival of some wild populations if inadequately regulated. We outline two methods to monitor internet sales of threatened species in order to assess potential threats and inform conservation actions. Our first method combines systematic monitoring of online offers of plants for sale over the internet with consultation by experts experienced in identifying plants collected from the wild based on images of the specimens, species identity and details of the trade. Our second method utilises a computational model, trained using Bayesian techniques to records that have been classified by an expert as wild collected or artificially propagated, to predict unknown properties of the traded taxa, such as whether a species being sold is collected from the wild or the identity of an unknown wild collected species. We used these methods to monitor internet trade in five genera of succulent plant species endemic to Madagascar, for which some have recently been listed for trade regulation under the Convention on International Trade in Endangered Species (CITES). This revealed potential threats to wild populations: for instance, almost all species recorded were of high conservation concern yet most offers for live plants were of apparently wild collected specimens (85%). Moreover, no records of international trade in the official CITES database were from the countries featured in our survey. Our model predicted with 89% accuracy whether the live plants were classified as propagated or wild collected by an expert, although accuracy dropped for data collected in the following summer due to a change in the patterns of sales. Our results highlight potential threats by internet trade to the survival of some CITES and non-CITES listed plant species from Madagascar. These should be addressed by further conservation actions and policy. More generally, our results reveal how standardised internet surveys can provide information on levels of trade in wild collected threatened species that could impact on natural populations and can provide data that can be incorporated into models to facilitate future monitoring and enforcement

    Spinning strings and integrable spin chains in the AdS/CFT correspondence

    Get PDF
    In this introductory review we discuss dynamical tests of the AdS_5 x S^5 string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S^5. The energies of the folded and circular spinning string solutions rotating on a S^3 within the S^5 are derived, which yield all loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display its reformulation in terms of a Heisenberg s=1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way we comment on further developments and generalizations of the subject and point to the relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2: improvements in the text and references adde

    Stop! In the name of transforming growth factor-β: keeping estrogen receptor-α-positive mammary epithelial cells from proliferating

    Get PDF
    Recent genetic and cell biological studies illustrate the importance of active transforming growth factor-β signaling in preventing the proliferation of estrogen receptor-positive cells in the normal mammary gland, and suggest how the loss of this inhibition may be important in early breast cancer progression

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    Get PDF
    INTRODUCTION: Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. METHODS: Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. RESULTS: IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D(1 )and transforming growth factor-β(3 )in the mammary gland were lower in the age-matched virgin rats than in the untreated parous and IGF-I-treated parous rats. CONCLUSION: We argue that tumor initiation (transformation and fixation of mutations) may be similar in parous and age-matched virgin animals, suggesting that the main differences in tumor formation lie in differences in tumor progression caused by the altered hormonal environment associated with parity. Furthermore, we provide evidence supporting the notion that tumor growth promotion seen in IGF-I-treated parous rats is caused by activation of estrogen receptor-α via the Raf/Ras/mitogen-activated protein kinase cascade

    Inhibition of the Nicotinic Acetylcholine Receptors by Cobra Venom α-Neurotoxins: Is There a Perspective in Lung Cancer Treatment?

    Get PDF
    Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted, we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated

    Physical Confirmation and Mapping of Overlapping Rat Mammary Carcinoma Susceptibility QTLs, Mcs2 and Mcs6

    Get PDF
    Only a portion of the estimated heritability of breast cancer susceptibility has been explained by individual loci. Comparative genetic approaches that first use an experimental organism to map susceptibility QTLs are unbiased methods to identify human orthologs to target in human population-based genetic association studies. Here, overlapping rat mammary carcinoma susceptibility (Mcs) predicted QTLs, Mcs6 and Mcs2, were physically confirmed and mapped to identify the human orthologous region. To physically confirm Mcs6 and Mcs2, congenic lines were established using the Wistar-Furth (WF) rat strain, which is susceptible to developing mammary carcinomas, as the recipient (genetic background) and either Wistar-Kyoto (WKy, Mcs6) or Copenhagen (COP, Mcs2), which are resistant, as donor strains. By comparing Mcs phenotypes of WF.WKy congenic lines with distinct segments of WKy chromosome 7 we physically confirmed and mapped Mcs6 to ∼33 Mb between markers D7Rat171 and gUwm64-3. The predicted Mcs2 QTL was also physically confirmed using segments of COP chromosome 7 introgressed into a susceptible WF background. The Mcs6 and Mcs2 overlapping genomic regions contain multiple annotated genes, but none have a clear or well established link to breast cancer susceptibility. Igf1 and Socs2 are two of multiple potential candidate genes in Mcs6. The human genomic region orthologous to rat Mcs6 is on chromosome 12 from base positions 71,270,266 to 105,502,699. This region has not shown a genome-wide significant association to breast cancer risk in pun studies of breast cancer susceptibility
    • …
    corecore