12 research outputs found

    Quantitative Proteomic Analysis of Human Embryonic Stem Cell Differentiation by 8-Plex iTRAQ Labelling

    Get PDF
    Analysis of gene expression to define molecular mechanisms and pathways involved in human embryonic stem cells (hESCs) proliferation and differentiations has allowed for further deciphering of the self-renewal and pluripotency characteristics of hESC. Proteins associated with hESCs were discovered through isobaric tags for relative and absolute quantification (iTRAQ). Undifferentiated hESCs and hESCs in different stages of spontaneous differentiation by embryoid body (EB) formation were analyzed. Using the iTRAQ approach, we identified 156 differentially expressed proteins involved in cell proliferation, apoptosis, transcription, translation, mRNA processing, and protein synthesis. Proteins involved in nucleic acid binding, protein synthesis, and integrin signaling were downregulated during differentiation, whereas cytoskeleton proteins were upregulated. The present findings added insight to our understanding of the mechanisms involved in hESC proliferation and differentiation

    Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis

    The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death

    No full text
    corecore