5 research outputs found

    On the effects of mechanical stress of biological membranes in modeling of swelling dynamics of biological systems

    Get PDF
    We highlight mechanical stretching and bending of membranes and the importance of membrane deformations in the analysis of swelling dynamics of biological systems, including cells and subcellular organelles. Membrane deformation upon swelling generates tensile stress and internal pressure, contributing to volume changes in biological systems. Therefore, in addition to physical (internal/external) and chemical factors, mechanical properties of the membranes should be considered in modeling analysis of cellular swelling. Here we describe an approach that considers mechanical properties of the membranes in the analysis of swelling dynamics of biological systems. This approach includes membrane bending and stretching deformations into the model, producing a more realistic description of swelling. We also discuss the effects of membrane stretching on swelling dynamics. We report that additional pressure generated by membrane bending is negligible, compared to pressures generated by membrane stretching, when both membrane surface area and volume are variable parameters. Note that bending deformations are reversible, while stretching deformation may be irreversible, leading to membrane disruption when they exceed a certain threshold level. Therefore, bending deformations need only be considered in reversible physiological swelling, whereas stretching deformations should also be considered in pathological irreversible swelling. Thus, the currently proposed approach may be used to develop a detailed biophysical model describing the transition from physiological to pathological swelling mode.National Aeronautics & Space Administration (NASA):80NSSC19M0049; PR Space Grant (NASA):NNX15AI11Hinfo:eu-repo/semantics/publishedVersio

    A mathematical model of mitochondrial swelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>permeabilization </it>of mitochondrial membranes is a decisive event in apoptosis or necrosis culminating in cell death. One fundamental mechanism by which such permeabilization events occur is the calcium-induced mitochondrial permeability transition. Upon Ca<sup>2+</sup>-uptake into mitochondria an increase in inner membrane permeability occurs by a yet unclear mechanism. This leads to a net water influx in the mitochondrial matrix, mitochondrial swelling, and finally the rupture of the outer membrane. Although already described more than thirty years ago, many unsolved questions surround this important biological phenomenon. Importantly, theoretical modeling of the mitochondrial permeability transition has only started recently and the existing mathematical models fail to characterize the swelling process throughout the whole time range.</p> <p>Results</p> <p>We propose here a new mathematical approach to the mitochondrial permeability transition introducing a specific delay equation and resulting in an optimized representation of mitochondrial swelling. Our new model is in accordance with the experimentally determined course of volume increase throughout the whole swelling process, including its initial lag phase as well as its termination. From this new model biological consequences can be deduced, such as the confirmation of a positive feedback of mitochondrial swelling which linearly depends on the Ca<sup>2+</sup>-concentration, or a negative exponential dependence of the average swelling time on the Ca<sup>2+</sup>-concentration. Finally, our model can show an initial shrinking phase of mitochondria, which is often observed experimentally before the actual swelling starts.</p> <p>Conclusions</p> <p>We present a model of the mitochondrial swelling kinetics. This model may be adapted and extended to diverse other inducing/inhibiting conditions or to mitochondria from other biological sources and thus may benefit a better understanding of the mitochondrial permeability transition.</p
    corecore